
About Erlang/OTP and

Multi-core performance in

particular
Erlang Factory London June 26 2009

Kenneth Lundin

Manager of the Erlang/OTP team at Ericsson

Erlang/OTP R13B
highlights

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-243

OTP release info R13B (April

22:nd)
Some Highlights in the Release
� Multicore performance improvements

– (multiple run-queues)
– Detecting CPU topology automatically at startup (Linux and Solaris only)
– Possible to manually specify CPU topology to override info from the OS or OS:es

where it is not possible to detect the topology correctly.
– Possible to lock schedulers to logical CPUs (Linux and Solaris only)
– Optimized message passing (reduced time for locking) (important when many

senders to the same process)

�� Unicode supportUnicode support
– Impact on IO, new BIF’s, support for UTF in bit-syntax,...)

�� New SSL implementationNew SSL implementation
– ready for limited use in products

�� WxErlangWxErlang
– (beta version) (GUI library) planned to replace GS

�� RelToolRelTool
– a release management tool with graphical frontend, stepwise adding support for

creation of standalone programs distributed as few files.

�� DialyzerDialyzer
– (support for opaque types)

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-244

OTP release info R13B01 (June

10:th)

Mainly some bug-fixes on top of R13B. Recommended to upgrade
from R13B to this one.

Some Highlights in the Release

�� Multicore performance improvements:Multicore performance improvements:
– encoding and decoding messages over the Erlang distribution

protocol is made more parallel
– Improved SMP concurrency for ETS tables (more fine granular

locking)

�� New functions in ETSNew functions in ETS to transfer ownership of table.
�� New options added to New options added to open_portopen_port

– spawn_executable and spawn_driver

�� A brand new XML parserA brand new XML parser
– xmerl_sax_parser 3-4 times faster than the old one and not so

memory hungry. Validation will be supported in R13B02.

�� LeexLeex
– a lexical analyzer generator for Erlang, has been added as a

complement to yecc in the Parsetools application.

Multicore and Erlang in more
detail

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-246

Multi-core is a SW challenge

�� Impact on the entire software stackImpact on the entire software stack
– Tools, languages, libraries, runtimes, operating systems

have support you in utilizing multi-core efficiently.

�� Shared memory threads and locks is too low levelShared memory threads and locks is too low level
– Programming with threads and locks in C/C++ and even

Java requires great skills and it takes time to get it right.

�� Erlang already has higher level abstractions for thisErlang already has higher level abstractions for this
– Very light-weight processes without shared state. Message

passing.

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-247

The Erlang way

�� Continue program Erlang as beforeContinue program Erlang as before
– Many Erlang applications written long before the multi-core era will run and

utilize the multiple cores without changes.

�� Use Erlang processesUse Erlang processes
– to represent parallel things in the application. E.g. calls, transactions, web-

server requests, subscribers etc.

�� Make sure you use enough Erlang processesMake sure you use enough Erlang processes
– Requires some extra thinking to assure that there are enough processes

ready to run and to avoid creating central processes which can become
bottlenecks.

�� Possibly change some options to the Erlang startupPossibly change some options to the Erlang startup
– Depending on your system and how many E-nodes and other processes

which will run in your setup.

�� Possibly profile your applicationPossibly profile your application
– If the application does not scale as expected, profile with percept and

other tools to find the application level bottlenecks.

�� That’s itThat’s it
– your program will run well on all kinds of systems from 1 core to more than

64 cores.

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-248

Some Processors that we have
tested Erlang on

� AMD Opteron Dual and Quad core (NUMA) GEP

� Intel XEON Quad core

� Intel Nehalem Quad core with hyperthreads (NUMA)

� Tilera Pro 64 cores (NUMA)

� Sun Niagara T2000 , 8 cores with 4 threads each

� 4 x Intel Dunnington with 6 cores each

� Octeon II 16 or 32 cores

� Freescale PPC 2 or 4 cores

� Intel Core2 (in your laptops)

� Memory arch, cache-size are of great importance

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-249

History and evolution of SMP
support in Erlang

� Erlang SMP (Symmetrical Multi Processor) started

1997 with master thesis work by Pekka Hedqvist
– Used a Compaq 4 x Pentium Pro 200 Mhz with Linux

� Erlang SMP work restarted 2005 as part of ordinary

development, external coop with Uppsala University

and Tony Rogvall (Synapse)

� First stable release in R11B May 2006

� Running in products March 2007, 1.7 scaling on dual

core

� ...

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2410

How it used to work
Erlang (non SMP)Erlang (non SMP)Erlang (non SMP)Erlang (non SMP)

Scheduler #1

Runqueue

Erlang VM

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2411

The first solution
Erlang SMP VM (before R13)

Scheduler #1

Scheduler #3

Scheduler #2

Runqueue

Erlang VM

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2412

Our strategy with SMP

� Make it work -> measure -> optimize

� Hide the problems and awareness of SMP execution

as much as possible for the programmer.

� Erlang should be programmed in the normal style using

processes for parallelization and encapsulation

� An Erlang program should run perfectly well on any
system no matter what number of cores or processors

there are

� Fine grained parallelism as a later stage when running

on really many cores >32?

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2413

Multiple runq-ueues
Erlang SMP VM (R13)

Scheduler #1

Scheduler #3

Scheduler #2

runqueue

Erlang VM

runqueue

runqueue

migration

logic

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2414

Example of improvement with multiple

run-queues
big:bang

(multiple run-queue in blue)
Tilera TilePro64 (64 cores)

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2415

Some Measurements
16 processes doing H.248 encode/decode in parallel

(multiple run-queue in red)
2 x Intel Xeon E5310 Quad Core, SLES 10 x86_64

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2416

Migration logic

• Strive to keep the maximum number of run able

processes equal on all schedulers

• Load balancing is performed by the scheduler that

first reaches its max limit of reductions.

1. Collect statistics about the maxlength of all
schedulers run-queues

2. Calculate the average limit per run-queue/prio and

setup migration paths

3.3. Give away jobsGive away jobs from schedulers over the limit,

Take jobsTake jobs to schedulers under the limit

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2417

Migration logic
(a sketch on how it works)

Full load

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2418

Migration logic
continued

• Migrations occurs when the scheduler has finished

a job and goes on until the limit is reached or a new

loadbalancing takes place.

• There is also work-stealing , which occurs when a
scheduler gets an emty run-queue

• Running on full load or not!

• If all schedulers are not fully loaded, jobs will be

migrated to schedulers with lower id’s and thus

making some schedulers inactive.

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2419

SMP support has its cost

� Non SMP is slightly faster than the SMP VM with 1

scheduler.

� Optimizing for many core systems will also slightly

reduce performance on few core systems

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2420

The use of memory is very
important
�� 64 bit Erlang is slower than 32 bit Erlang64 bit Erlang is slower than 32 bit Erlang

– This is because of almost twice as much memory used in

the 64 bit version. And this is because most of the data

contains pointers.

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2421

Tools for profiling

Erlang VM level

� Lock counter (special variant of VM)

� V-tune (Intel)

� Tools from Accumem

� Open Source tool that does the equiv of V-tune

Erlang application level

� Percept

� Lock counter (need to be documented and made

official)

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2422

SMP in R12 and R13

� SMP version of VM is started automatically if the OS

reports more than 1 cpu.

� Default can be overridden with the
–smp [enable|disable|auto] flag.

–smp auto is the default

� If smp is set to enable or auto use +S Number to set

the number of schedulers (+S 4 for 4 schedulers)

� Normally nothing to gain from running with more

schedulers than cpu’s or cores.

� Common mistake: The number of cores available might
not be what you think. (might be limited with taskset)

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2423

Overview of SMP related options
and functions

Options to ”erl” (the Erlang VM startup)

erl -smp [enable|auto|disable] default is auto

erl +S Schedulers:SchedulerOnLine (erl +S 4:4)

Set Scheduler Bind Type

erl +sbt db

erlang:system_flag(scheduler_bind_type,default_bind)

Set CPU Topology

erl +sct L0-3c0-3

erlang:system_flag(cpu_topology,CpuTopology).

erlang:system_info(cpu_topology).

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2424

Get SMP properties in runtime with
erlang:system_info/1

cpu_topology Set with system_flag/2

multi_scheduling, block|unblock Set with system_flag/2

scheduler_bind_type Set with system_flag/2

scheduler_bindings

logical_processors

multi_scheduling_blockers

scheduler_id

schedulers

schedulers_online Set with system_flag/2

smp_support

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2425

Overview of SMP related options
and functions (examples)
erl +sbt db

or

erlang:system_flag(scheduler_bind_type,default_bind).

1> erlang:system_info(scheduler_bindings).

{0,3,1,2}

2>

>% erl

1> erlang:system_info(scheduler_bindings).

{unbound,unbound,unbound,unbound}

1> erlang:system_info(cpu_topology).

[{processor,[{core,{logical,0}},

{core,{logical,3}},

{core,{logical,1}},

{core,{logical,2}}]}]

2>

This binds the schedulers
to processor cores

(normally in an optimal
way)

Doing this will boost
performance significantly
and it is more important
the more cores or cpus
you have on the system.

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2426

Intel Nehalem 2 x 4 core with one hyperthread per core

Erlang and the Nehalem architecture goes very well together.

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2427

Multi-core tips and tricks (2)

Cpu topology presented for some real machines:

1> erlang:system_info(cpu_topology).
[{processor,{logical,0}},{processor,{logical,1}}]

1> erlang:system_info(cpu_topology).
[{processor,[{core,{logical,0}},

{core,{logical,1}},
{core,{logical,2}},
{core,{logical,3}}]}]

Here is a dual processor quad-core:
1> erlang:system_info(cpu_topology).

[{processor,[{core,{logical,0}},
{core,{logical,2}},
{core,{logical,4}},
{core,{logical,6}}]},

{processor,[{core,{logical,1}},
{core,{logical,3}},
{core,{logical,5}},
{core,{logical,7}}]}]

A dual core processor

A quad core processor

A dual quad core

processor system

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2428

Multi-core tips and tricks (3)

1> erlang:system_info(cpu_topology).

[{node,[{core,[{thread,{logical,0}},{thread,{logical,1}}]},

{core,[{thread,{logical,2}},{thread,{logical,3}}]},

{core,[{thread,{logical,4}},{thread,{logical,5}}]},

{core,[{thread,{logical,6}},{thread,{logical,7}}]}]},

{node,[{core,[{thread,{logical,8}},{thread,{logical,9}}]},

{core,[{thread,{logical,10}},{thread,{logical,11}}]},

{core,[{thread,{logical,12}},{thread,{logical,13}}]},

{core,[{thread,{logical,14}},{thread,{logical,15}}]}]}]

Here is a dual processor (each

processor in different numa

nodes) quad-core with hyper-

threads.

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2429

Benchmark showing the positive effect if

binding the schedulers (Tilera Pro 64 cores)

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2430

Next steps with SMP and Erlang

Some known bottlenecks to address

� Improved handling of process table

� Separate allocators per scheduler

� Delayed dealloc (let the right scheduler do it)

� Use NUMA info for grouping of schedulers

� Separate poll sets per scheduler (IO)

� Support Scheduler bindings, cpu_topology on Windows.

� Dynamically linked in BIF’s (for C-code , easier to write and more

efficient than drivers)

� Optimize Erlang applications in Erlang/OTP

� Fine grained parallelism, language and library functions.

� Better and more benchmarks

© Ericsson AB 2009 About Erlang/OTP and Multi-core performance in particular 2009-06-2431

