About Erlang/OTP and
Multi-core performance in
particular

Erlang Factory London June 26 2009

Kenneth Lundin
Manager of the Erlang/OTP team at Ericsson

ERICSSON 2

AAAAAAAAAAAAAAAA

| v

ERLANG

Erlang/OTP R13B
highlights

ERICSSON 2

AAAAAAAAAAAAAAAA

o OTP release info R13B (April
ERLANG 22nd)

Some Highlights in the Release

= Multicore performance improvements

— (multiple run-queues)

— Detecting CPU topology automatically at startup (Linux and Solaris only)

— Possible to manually specify CPU topology to override info from the OS or OS:es
where it is not possible to detect the topology correctly.

— Possible to lock schedulers to logical CPUs (Linux and Solaris only)

— Optimized message passing (reduced time for locking) (important when many
senders to the same process)

= Unicode support

— Impact on 10, new BIF’s, support for UTF in bit-syntax,...)
= New SSL implementation

- ready for limited use in products

= WxErlang
— (beta version) (GUI library) planned to replace GS

= RelTool

— arelease management tool with graphical frontend, stepwise adding support for
creation of standalone programs distributed as few files.

= Dialyzer
— (support for opaque types)

© Ericsson AB 2009 3 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON 2

[@4 OTP release info R13B01 (June
ERLANG 10th)

Mainly some bug-fixes on top of R13B. Recommended to upgrade
from R13B to this one.

Some Highlights in the Release

= Multicore performance improvements:

— encoding and decoding messages over the Erlang distribution
protocol is made more parallel

— Improved SMP concurrency for ETS tables (more fine granular
locking)
= New functions in ETS to transfer ownership of table.

= New options added to open_port
- spawn_executable and spawn_driver
= A brand new XML parser
- xmerl_sax_parser 3-4 times faster than the old one and not so
memory hungry. Validation will be supported in R13B02.
= Leex

— alexical analyzer generator for Erlang, has been added as a
complement to yecc in the Parsetools application.

© Ericsson AB 2009 4 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON ?

| v

ERLANG

Multicore and Erlang in more
detalil

ERICSSON 2

AAAAAAAAAAAAAAAA

[o4 Multi-coreis a SW challenge

ERLANG

= Impact on the entire software stack
— Tools, languages, libraries, runtimes, operating systems
have support you in utilizing multi-core efficiently.
= Shared memory threads and locks is too low level
— Programming with threads and locks in C/C++ and even
Java requires great skills and it takes time to get it right.
= Erlang already has higher level abstractions for this

— Very light-weight processes without shared state. Message
passing.

© Ericsson AB 2009 6 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON 2

= The Erlang way

ERLANG

= Continue program Erlang as before
— Many Erlang applications written long before the multi-core era will run and
utilize the multiple cores without changes.
= Use Erlang processes
— torepresent parallel things in the application. E.g. calls, transactions, web-
server requests, subscribers etc.
= Make sure you use enough Erlang processes
— Requires some extra thinking to assure that there are enough processes
ready to run and to avoid creating central processes which can become
bottlenecks.
= Possibly change some options to the Erlang startup
— Depending on your system and how many E-nodes and other processes
which will run in your setup.
= Possibly profile your application
— If the application does not scale as expected, profile with percept and
other tools to find the application level bottlenecks.
= That’s it
— your program will run well on all kinds of systems from 1 core to more than
64 cores.

© Ericsson AB 2009 7 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON ?

[@4 Some Processors that we have

FHARS tested Erlang on

= AMD Opteron Dual and Quad core (NUMA) GEP

= |ntel XEON Quad core

= [ntel Nehalem Quad core with hyperthreads (NUMA)
= Tilera Pro 64 cores (NUMA)

= Sun Niagara T2000 , 8 cores with 4 threads each

= 4 x Intel Dunnington with 6 cores each

= Qcteon Il 16 or 32 cores

= Freescale PPC 2 or 4 cores

= [ntel Core2 (in your laptops)

= Memory arch, cache-size are of great importance

© Ericsson AB 2009 8 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON ?

[@4 History and evolution of SMP
ERLANG support in Erlang

= Erlang SMP (Symmetrical Multi Processor) started
1997 with master thesis work by Pekka Hedqvist
— Used a Compaq 4 x Pentium Pro 200 Mhz with Linux
= Erlang SMP work restarted 2005 as part of ordinary
development, external coop with Uppsala University
and Tony Rogvall (Synapse)
= First stable release in R11B May 2006

= Running in products March 2007, 1.7 scaling on dual
core

ricsson AB 2009 9 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON ?

e How it used to work
ERLANG Evrlo ng (non SMP)

Erlang VM

Ericsson AB 2009 10 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON ?

ion 3)
irst SOIUthOre ;
S
o Iang
L Er

Erlang VM

e
eu

‘N
N
~.~
....-......~...

A\

« Our strategy with SMP

ERLANG

> Make it work -> measure -> optimize->

= Hide the problems and awareness of SMP execution
as much as possible for the programmer.

= Erlang should be programmed in the normal style using
processes for parallelization and encapsulation

= An Erlang program should run perfectly well on any
system no matter what number of cores or processors
there are

= Fine grained parallelism as a later stage when running
on really many cores >327

© Ericsson AB 2009 12 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON ?

e Multiple rung-ueues
RLANG Erlang SMP VM (R13)

Erlang VM

A\

- Example of improvement with multiple
['] run-queues

ERLANG .
big:bang
(multiple run-queue in blue)
Tilera TilePro64 (64 cores)

I ! !
20, 00 #Schedulers T [STeMpele

© Ericsson AB 2009 14 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON ?

| v

ERLANG

MStonel wvalue

Fixed number of loader processes and varying number of schedulers

Some Measurements

(multiple run-queue in red)
2 X Intel Xeon E5310 Quad Core, SLES 10 x86_ 64

aoo0ooon

FO0aoooo —

_,/'f

BOOOOO00

SOo0o0on

40000000

30000000

20000000

10000000

0 -
0

3 4 5 B

Mumber of schedulers

—0 1 —+5mig

16 processes doing H.248 encode/decode in parallel

© Ericsson AB 2009

About Erlang/OTP and Multi-core performance in particular

2009-06-24

ERICSSON 2

, Migration logic

ERLANG

« Strive to keep the maximum number of run able
processes equal on all schedulers

« Load balancing is performed by the scheduler that
first reaches its max limit of reductions.

1. Collect statistics about the maxlength of all
schedulers run-queues

2. Calculate the average limit per run-queue/prio and
setup migration paths

3. Give away jobs from schedulers over the limit,
Take jobs to schedulers under the limit

ricsson AB 2009 16 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON ?

| v

ERLANG

Migration logic
(a sketch on how it works)

Full load

© Ericsson AB 2009

A\

[-l Migration logic
FRLANG continued

« Migrations occurs when the scheduler has finished
a job and goes on until the limit is reached or a new
loadbalancing takes place.

« There is also work-stealing , which occurs when a
scheduler gets an emty run-queue

* Running on full load or not!

« If all schedulers are not fully loaded, jobs will be
migrated to schedulers with lower id’s and thus
making some schedulers inactive.

=
© Ericsson AB 2009 18 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON 2

[oA SMP support has its cost

ERLANG

B0, 0 4

40, 0 1

F0 00 T

20, 00 1

10, 00

Non SMP is slightly faster than the SMP VM with 1
scheduler.

Optimizing for many core systems will also slightly
reduce performance on few core systems

Mo SHP SHP 1 SHP 2 SHP 4 SHP 2

© Ericsson AB 2009 19 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON ?

The use of memory is very

important
= 64 bit Erlang is slower than 32 bit Erlang

— This is because of almost twice as much memory used in
the 64 bit version. And this is because most of the data
contains pointers.

© Ericsson AB 2009 20 About Erlang/OTP and Multi-core performance in particular 2009-06-24

ERICSSON 2

e Tools for profiling

ERLANG

Erlang VM level

= Lock counter (special variant of VM)

= V-tune (Intel)

= Tools from Accumem

= Open Source tool that does the equiv of V-tune
Erlang application level

= Percept

= Lock counter (need to be documented and made
official)

ricsson AB 2009 21 About Erlang/OTP and Multi-core performance in particular

2009-06-24

ERICSSON 2

o SMP in R12 and R13

ERLANG

= SMP version of VM is started automatically if the OS
reports more than 1 cpu.

= Default can be overridden with the
-smp [enable|disablelauto] flag.
—smp auto is the default

= |f smpis setto enable or auto use +S Number 10 set
the number of schedulers (+s 4 for 4 schedulers)

= Normally nothing to gain from running with more
schedulers than cpu’s or cores.

= Common mistake: The number of cores available might
not be what you think. (might be limited with taskset)

=
ricsson AB 2009 22 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON 2

Overview of SMP related options
and functions

Options to "er1” (the Erlang VM startup)
erl -smp [enable|auto|disable] defaultis auto
erl +S Schedulers:SchedulerOnLine (erl +S 4:4)

Set Scheduler Bind Type
erl +sbt db

erlang:system_flag(scheduler_bind_type,default_bind)

Set CPU Topology
erl +sct LO-3c0-3

erlang:system_flag(cpu_topology,CpuTopology) .
erlang:system_info (cpu_topology).

© Ericsson AB 2009 23 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON ?

Get SMP properties in runtime with
erlang:system_info/1

cpu_topology Set with system_flag/2
multi_scheduling, block|unblock | Set with system_flag/2

scheduler_bind_type Set with system_flag/2

scheduler_bindings

logical_processors

multi_scheduling_blockers

scheduler _id

schedulers

schedulers_online Set with system_flag/2

smp_support

© Ericsson AB 2009 24 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON 2

Overview of SMP related options
and functions (examples)

erl +sbt db

or
erlang:system_fla eduler bind type,default_bind).

1> erlang:system_info bindings) .

{0,3,1,2} This binds the schedulers
2 to processor cores

e erl (normally in an optimal

1> erlang:system_info (scheduler_bindings).
{unbound, unbound, unbound, unbound}
1> erlang:system_info(cpu_topology).
[{processor, [{core, {1logical,0}},
{core, {logical,3}},
{core, {logical,1l}},
{core, {logical,2}}]}]

2>

=
© Ericsson AB 2009 25 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON 2

Intel Nehalem 2 x 4 core with one hyperthread per core
[- l Erlang and the Nehalem architecture goes very well together.

ERLANG

peedup
T T T T T T
1 I I I l halem, speedup
1 I I I I 1 1 I I | I | ore, zpeedup
1 I I I I I
1 I I I I I
1 I I I I
I - === == == === A== Tt [F--=-== [== === Tt [e A
1 I I I
1 I I I
1 I I |
1 I I I I 1 1 I I T I I I 1
1 I I
1 I I I
S O) T S
1 | | | | 1 1 | | | | | | 1
I I I
I I I
1 I I I
1 I I I I 1 1 I I I I I I 1
1 I I I
1 | | |
i e e B AT T---—~ r——-—- [l I I T T-—~—~ r——-—- [el T
1 I I I I 1 I I I I I I 1
1 I I I
1 I I I
1 I I I
1 I I I I 1 1 I I I I I I 1
1 I I I
[R e it e e e i R R R L e it
1 I I I
1 I I I I 1 1 I I I I I I 1
1 I I I
1 I I I
1 I I I
1 I I I I 1 1 I I I I I I 1
7 S B Lo __ Lo | IR R, Ao 1 Lo __ N o
1 | | |
1 I I I
1 I I I I 1 1 I I I I I I 1
1 I I
1 I I
1 I I
1 | | | | 1 | | | | I | 1
LN e il A S T T T T g———"—""T"""77 | I I B T 77 r-— - | I B
1 I I
1 I I
1 I I i I 1 1 I I I I I I 1
1 I I
1 I I
1 I I
e A d-— o oo o - A 4o o oo e — = ———— e
1 I I
1 I I
1 I I
1 I I I I 1 1 I I I I I I 1
1 I I
1 I I
R e [. Lo | N Ao 1o Lo U [
| | | | 1 1 | | | | | | 1
1 I I
1 I I
1 I I
1 I I I I 1 1 I I I I I I 1
1 I
1 |
T T
2] 4 5 [H] @ 10 11 1z 13 14 15

© Ericsson AB 2009 26 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON ?

Multi-core tips and tricks (2)

Cpu topology presented for some real machines:

A dual core processor

1> erlang:system_info(cpu_topology).
[{processor,{logical,0}},{processor,{logical,1}}]

1> erlang:system_info(cpu_topology).
[{processor,[{core,{logical,0}},
{core,{logical,1}},
{core,{logical,2}},
{core,{logical,3}}]}]

A quad core processor

Here is a dual processor quad-core:
1> erlang:system_info(cpu_topology).
[{processor,[{core,{logical,0}},
{core,{logical,2}},
{core,{logical,4}},
{core,{logical,6}}]},
{processor,[{core,{logical,1}},
{core,{logical,3}},
{core,{logical,5}},
{core,{logical,7}}]}]

A dual quad core

=
© Ericsson AB 2009 27 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON 2

Multi-core tips and tricks (3)

1> erlang:system_info(cpu_topology).

[{node,[{core,[{thread,{logical,0}},{thread,{logical,1
{core,[{thread,{logical,2}},{thread,{logical,3}}]
{core,[{thread,{logical,4}},{thread,{logical,5}}]
{core,[{thread,{logical,6}},{thread,{logical,7}}

{node,[{core,[{thread,{logical,8}},{thread,{logical,9}
{core,[{thread,{logical,10}},{thread,{logical,11}
{core,[{thread,{logical,12}},{thread,{logical,13}
{core,[{thread,{logical,14}},{thread,{logical,15}

© Ericsson AB 2009 28

Here is a dual processor (each
processor in different numa
nodes) quad-core with hyper-

About Erlang/OTP and Multi-core performance in particular 2009-06-24

threads.

1}
}
}
H}s

H}s

His

H}s

HHI

ERICSSON 2

Benchmark showing the positive effect if
binding the schedulers (Tilera Pro 64 cores)

B tilera-benchmark-bigbang-50¢, log
B tilera-benchmark-bighang-5¢-bound, log

19,48

18,50 L2

1z

17,33

16

14

12,05
iz

11,68

10

1,54

© Ericsson AB 2009 29 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON ?

[o4 Next steps with SMP and Erlang

ERLANG

Some known bottlenecks to address

= |mproved handling of process table

= Separate allocators per scheduler

= Delayed dealloc (let the right scheduler do it)

= Use NUMA info for grouping of schedulers

= Separate poll sets per scheduler (10)

= Support Scheduler bindings, cpu_topology on Windows.

= Dynamically linked in BIF’s (for C-code , easier to write and more
efficient than drivers)

= Optimize Erlang applications in Erlang/OTP
= Fine grained parallelism, language and library functions.
= Better and more benchmarks

© Ericsson AB 2009 30 About Erlang/OTP and Multi-core performance in particular 2009-06-24 ERICSSON ?

ERICSSON 2

TAKING YOU FORWARD

