
F#
Succinct, Expressive, Functional

The F# Team

Microsoft Developer Division

Microsoft Research

Topics

• What is F# about?

• Some Simple F# Programming

• A Taste of Parallel/Reactive with F#

What is F# about?

Or: Why is Microsoft investing in functional

programming anyway?

Simplicity

Economics

Fun, Fun and More Fun!

Simplicity

Code!

//F#

open System

let a = 2

Console.WriteLine a

//C#
using System;

namespace ConsoleApplication1
{

class Program
{

static int a()
{

return 2;
}
static void Main(string[] args)
{

Console.WriteLine(a);
}

}
}

More Noise
Than Signal!

Pleasure

type Command = Command of (Rover -> unit)

let BreakCommand =

Command(fun rover -> rover.Accelerate(-1.0))

let TurnLeftCommand =

Command(fun rover -> rover.Rotate(-5.0<degs>))

Pain

abstract class Command
{

public virtual void Execute();
}
abstract class MarsRoverCommand : Command
{

protected MarsRover Rover { get; private set; }

public MarsRoverCommand(MarsRover rover)
{

this.Rover = rover;
}

}
class BreakCommand : MarsRoverCommand
{

public BreakCommand(MarsRover rover)
: base(rover)

{
}
public override void Execute()
{

Rover.Rotate(-5.0);
}

}
class TurnLeftCommand : MarsRoverCommand

{
public TurnLeftCommand(MarsRover rover)

: base(rover)

Pleasure

let swap (x, y) = (y, x)

let rotations (x, y, z) =

[(x, y, z);

(z, x, y);

(y, z, x)]

let reduce f (x, y, z) =

f x + f y + f z

Pain

Tuple<U,T> Swap<T,U>(Tuple<T,U> t)

{

return new Tuple<U,T>(t.Item2, t.Item1)

}

ReadOnlyCollection<Tuple<T,T,T>>
Rotations<T>(Tuple<T,T,T> t)

{

new ReadOnlyCollection<int>

(new Tuple<T,T,T>[]

{ new Tuple<T,T,T>(t.Item1,t.Item2,t.Item3);

new Tuple<T,T,T>(t.Item3,t.Item1,t.Item2);

new Tuple<T,T,T>(t.Item2,t.Item3,t.Item1);
});

}

int Reduce<T>(Func<T,int> f,Tuple<T,T,T> t)

{

return f(t.Item1) + f(t.Item2) + f (t.Item3);

}

Pleasure

type Expr =

| True

| And of Expr * Expr

| Nand of Expr * Expr

| Or of Expr * Expr

| Xor of Expr * Expr

| Not of Expr

Pain

public abstract class Expr { }
public abstract class UnaryOp :Expr
{

public Expr First { get; private set; }

public UnaryOp(Expr first)
{

this.First = first;
}

}

public abstract class BinExpr : Expr
{

public Expr First { get; private set; }

public Expr Second { get; private set;
}

public BinExpr(Expr first, Expr second)

{
this.First = first;
this.Second = second;

}

You
Can

Interoperate

With

Everything

Everything
Can

Interoperate

With

You

Economics

Fun!

F#: Influences

OCaml C#/.NETF#

Similar core

language

Similar object

model

F#: Combining Paradigms

I've been coding in F# lately, for a production task.

F# allows you to move smoothly in your programming style...

I start with pure functional code, shift slightly towards an

object-oriented style, and in production code, I sometimes

have to do some imperative programming.

I can start with a pure idea, and still finish my project with

realistic code. You're never disappointed in any phase of the

project!

Julien Laugel, Chief Software Architect, www.eurostocks.com

F#: The Combination Counts!

F#
Statically Statically

Typed

Succinct

Scalable

Libraries

ExplorativeExplorative

InteroperableInteroperable

Efficient

F# in More Detail

Functional
Core

Objects

Functional
Data

Units of
Measure

Imperative
Mutation &

I/O

Computation
Expressions

Meta
Programming

Quick Tour

Comments

// comment

(* comment *)

/// XML doc comment

let x = 1

Quick Tour

Booleans

not
expr
expr

Booleans

not expr Boolean negation

expr && expr Boolean “and”

expr || expr Boolean “or”

Overloaded Arithmetic

x + y
x
x * y
x / y
x % y
-

Overloaded Arithmetic

x + y Addition

x - y Subtraction

x * y Multiplication

x / y Division

x % y Remainder/modulus

-x Unary negation

Orthogonal & Unified Constructs

• Let “let” simplify your life…

let data = (1,2,3)

let f(a,b,c) =

let sum = a + b + c

let g(x) = sum + x*x

g(a), g(b), g(c)

Bind a static value

Bind a static function

Bind a local value

Bind a local function

Type inference. The safety

of C# with the

succinctness of a scripting

language

Demo: Some Basics…

Orthogonal & Unified Constructs

• Functions: like delegates + unified and simple

(fun x -> x + 1)

let f(x) = x + 1

(f,f)

val f : int -> int

Anonymous

Function value

Declare a

function value

A pair

of function values

predicate = 'a -> bool

send = 'a -> unit

threadStart = unit -> unit

comparer = 'a -> 'a -> int

hasher = 'a -> int

equality = 'a -> 'a -> bool

One simple

mechanism,

many

uses

A function type

F# - Functional

let f x = x+1

let pair x = (x,x)

let fst (x,y) = x

let data = (Some [1;2;3], Some [4;5;6])

match data with

| Some(nums1), Some(nums2) -> nums1 @ nums2

| None, Some(nums) -> nums

| Some(nums), None -> nums

| None, None -> failwith "missing!"

F# - Functional

List.map Seq.fold

Array.filter Lazy.force Set.union

Map LazyList Events Async...

[0..1000]

[for x in 0..10 -> (x, x * x)]

[| for x in 0..10 -> (x, x * x) |]

seq { for x in 0..10 -> (x, x * x) }

Range

Expressions

List via query

Array via query

IEnumerable

via query

Immutability the norm…

Values may

not be

changed

Data is immutable

by default

 Not Mutate

 Copy & Update

In Praise of Immutability

• Immutable objects can be relied upon

• Immutable objects can transfer between

threads

• Immutable objects can be aliased safely

• Immutable objects lead to (different)

optimization opportunities

F# - Lists

open System.IO

let rec allFiles(dir) =

[for file in Directory.GetFiles(dir) do

yield file

for sub in Directory.GetDirectories(dir) do

yield! allFiles(sub)]

allFiles(@"C:\Demo")

Generated

Lists

F# - Sequences

open System.IO

let rec allFiles(dir) =

seq

{ for file in Directory.GetFiles(dir) do

yield file

for sub in Directory.GetDirectories(dir) do

yield! allFiles(sub) }

allFiles(@"C:\WINDOWS")

|> Seq.take 100

|> show

On-demand

sequences

Pipelines

//F#

#light

open System

let a = 2

Console.WriteLine(a)

//C#
using System;

namespace ConsoleApplication1
{

class Program
{

static int a()
{

return 2;
}

static void Main(string[]
args)

{
Console.WriteLine(a);

}
}

}

Looks Weakly typed?

Maybe Dynamic?

Weakly Typed? Slow?

Typed Untyped

Efficient
Interpreted

Reflection
Invoke

F#
Yet rich,

dynamic

Yet succinct

Objects

Class Types

type

Class Types

type ObjectType(args) =

let internalValue = expr
let internalFunction args = expr
let mutable internalState = expr

member x.Prop1 = expr
member x.Meth2 args = expr

Constructing Objects

new

Constructing Objects

new FileInfo(@"c:\misc\test.fs")

F# - Objects + Functional

type Vector2D(dx:double,dy:double) =

member v.DX = dx

member v.DY = dy

member v.Length = sqrt(dx*dx+dy*dy)

member v.Scale(k) = Vector2D(dx*k,dy*k)

Inputs to

object

construction

Exported

properties

Exported

method

F# - Objects + Functional

type Vector2D(dx:double,dy:double) =

let norm2 = dx*dx+dy*dy

member v.DX = dx

member v.DY = dy

member v.Length = sqrt(norm2)

member v.Norm2 = norm2

Internal (pre-

computed) values

and functions

F# - Objects + Functional

type HuffmanEncoding(freq:seq<char*int>) =

...

< 50 lines of beautiful functional code>

...

member x.Encode(input: seq<char>) =

encode(input)

member x.Decode(input: seq<char>) =

decode(input)

Immutable

inputs

Internal

tables

Publish

access

F# - Objects + Functional

type Vector2D(dx:double,dy:double) =

let mutable currDX = dx

let mutable currDX = dy

member v.DX = currDX

member v.DY = currDY

member v.Move(x,y) =

currDX <- currDX+x

currDY <- currDY+y

Internal state

Publish

internal state

Mutate internal

state

AdPredict: What We Observed

• Quick Coding

• Agile Coding

• Scripting

• Performance

• Memory-Faithful

• Succinct

• Symbolic

• .NET Integration

F#’s powerful type

inference means less

typing, more thinking

Type-inferred code is

easily refactored

“Hands-on” exploration.

Immediate scaling to

massive data sets

mega-data structures,

16GB machines

Live in the domain,

not the language

Schema compilation

and “Schedules”
Especially Excel, SQL

Server

Smooth Transitions

• Researcher’s Brain  Realistic, Efficient Code

• Realistic, Efficient Code  Component

• Component  Deployment

UNITS OF MEASURE

1985

Mirror on underside

of shuttle
SDI experiment:

The plan

Big mountain in

Hawaii

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

1985

SDI experiment:

The reality

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

1985

The reality

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

NASA Mars Climate Orbiter, 1999

NASA Mars Climate Orbiter, 1999

let EarthMass = 5.9736e24<kg>

// Average between pole and equator radii
let EarthRadius = 6371.0e3<m>

// Gravitational acceleration on surface of Earth
let g = PhysicalConstants.G * EarthMass / (EarthRadius * EarthRadius)

F# Async/Parallel

async { ... }

• For users:

You can run it, but it may take a while

Or, your builder says...

OK, I can do the job, but I might have to talk to someone else

about it. I’ll get back to you when I’m done

async { ... }

A Building Block for

Async/Parallel/Reactive

Design Patterns

DEMO

async { ... }

async.Delay(fun () ->
async.Bind(ReadAsync "cat.jpg", (fun image ->

let image2 = f image
async.Bind(writeAsync "dog.jpg",(fun () ->

printfn "done!"
async.Return())))))

async { let! image = ReadAsync "cat.jpg"
let image2 = f image
do! writeAsync image2 "dog.jpg"
do printfn "done!"
return image2 }

Continuation/

Event callback

Asynchronous "non-

blocking" action

You're actually writing this (approximately):

8 Ways to Learn

• FSI.exe

• Samples Included

• Go to definition

• Lutz’ Reflector

• http://cs.hubfs.net

• Codeplex Fsharp

Samples

• Books

• ML

http://cs.hubfs.net/

Books about F#

Visit www.fsharp.net

http://fsharp.net/

Getting F#

• September 2008: CTP released

F# will be a supported language in

Visual Studio 2010

• Next stop: Visual Studio 2010 Beta 1

Look for it soon!

Questions & Discussion

© 2007 Microsoft Corporation. All rights reserved.

This presentation is for informational purposes only.

MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

