
Model Based Testing of Data

Constraints

Nicolae Paladi

Thomas Arts

Problem

Assume

• An ER diagram and list of constraints on data

• A large Mnesia database implementing the above

• An application interface to access the database (reading/writing)

How can we be sure that the application respects

the entity-relationship structure and the

constraints on data?

• The DBMS is normally

trusted, so no need to

test it

• What if referential

Problem

application interface

external

interface

• What if referential

integrity is not enforced

by the DBMS? The

constraints implemented

in the business logic are

both obscure and spread

throughout the code

Mnesia

DBMS

application

E/R diagram

pbal_key

invnoinvno
invno

E/R diagram

invnoinvno
invno

E/R diagram

Relations and constraints

In the usual case of lacking specification, reverse

engineering is necessary to identify and SPECIFY

the constraints.

SQL is a suitable language to specify the

constraints in.

Specification determines what to test for!

Relations and constraints

In the usual case of lacking specification, reverse

engineering is necessary to identify and SPECIFY

the constraints.

SQL is a suitable language to specify the

constraints in.
Mnesia's query language

(QLC) can also be easily

used, but is not

universally known

Specification SQL

SELECT `ptrans`.`ano`

FROM ptrans, pbal

WHERE

((`ptrans`.`pbal key` =`pbal`.`key`)

AND NOT

OK if this query

results in empty set

ØAND NOT

(`ptrans`.`invno` =`pbal`.`invno`)) Ø

Invariants

SQL query can be formulated as QLC invariants

invariant pbal() ->

Q = qlc:q([Pb#pbal.ano||

Pb <- mnesia:table(pbal),

PTrans <- mnesia:table(ptrans),PTrans <- mnesia:table(ptrans),

Pb#pbal.key == PTrans#ptrans.pbal_key,

Pb#pbal.invno /= Inv#ptrans.invno]),

{atomic, Response} =

mnesia:transaction(fun() -> qlc:e(Q) end),

Response == [].

Test method
(Castro & Arts 2009)

General test idea:

• Check the invariants on the database

• Call the interface functions under test for a

random number of timesrandom number of times

• Check the invariants on the database

If invariants hold, constraints are not violated

Easy?

Model

� In order to test arbitrary sequences of interface

functions a QuickCheck state machine model is

defined.

� The state of the model only contains information

necessary to generate valid sequences.

� The state of the system is checked by invariants.

Model

We need generators for the records used as
arguments when calling the interface functions
under test:

item() - >item() - >
#item{artno = nat(),

description = list(char()),

flags = 0,

discount = nat(),

quantity = quantity()}.

The generator nat() gives rather small values and hence good
possibility to generate sequences that access earlier created
items.

Model

We need generators for the records used as
arguments when calling the interface functions
under test:

item() - >item() - >
#item{artno = nat(),

description = list(char()),

flags = 0,

discount = nat(),

quantity = quantity()}.

Alternative: new

generator artno of which

we can increase and

decrease likelihood of

duplicates

Model

Another generator example:

either just a few or very many

quantity() ->
?LET({N,T,I},{nat(), choose(0,1),laregint()},

N + T*abs(I)).

Model

We need to call interface functions. For example,

checking whether there is an active reservation.

Some values need to make sense, some can be

arbitrary random. Those that need to make sense are

later on guided by the state machine model.

estore_server:handler('undefined',

{call, activate_reservation,

[Reservation, Items, Pno, (...))]}),

interface function

Model

Each interface functions is embedded in a local
version:

activate_reservation(Reservation,Items,Pno) ->
Result =

estore_server:handler('undefined',
{call, activate_reservation,
[Reservation, Items, Pno, (...))]}),[Reservation, Items, Pno, (...))]}),

Person = person:read_d(Pno),
Blacklisted = (Person#person.blacklisted == 1),
case Result of

{false,{response,[{array, ["no risk",Invno]}]}}
when not Blacklisted -> Result;

{false,{response,{fault, -4,"blocked"}}}
when Blacklisted -> Result;

_ -> exit(unexpected_value)
end.

Model

Each interface functions is embedded in a local
version:

activate_reservation(Reservation,Items,Pno) ->
Result =

estore_server:handler('undefined',
{call, activate_reservation,
[Reservation, Items, Pno, (...))]}),

return Result if

business logic is

not violated.

Checks simple

relationship

[Reservation, Items, Pno, (...))]}),
Person = person:read_d(Pno),
Blacklisted = (Person#person.blacklisted == 1),
case Result of

{false,{response,[{array, ["no risk",Invno]}]}}
when not Blacklisted -> Result;

{false,{response,{fault, -4,"blocked"}}}
when Blacklisted -> Result;

_ -> exit(unexpected_value)
end.

Positive and

Negative Test

in one

Commands generator

command(S) ->
frequency(

[{3, {call, ?MODULE, delete_invoice,
[elements(S#state.invoices)]}}

|| S#state.invoices /= []] ++
[{3, {call, ?MODULE, add_pbals,

[elements(S#state.invoices), elements(S#state.pnos)]}}
|| S#state.invoices /= [], S#state.pnos /=[]] ++

[{5, {call, ?MODULE, activate_reservation, [{5, {call, ?MODULE, activate_reservation,
[reserve(), list(item())]}}] ++

[{1, {call, ?MODULE, deactivate,
[elements(S#state.invoices)]}}

|| S#state.invoices /= []] ++
[{5, {call, ?MODULE, add_kcase, [

elements(S#state.invoices), choose(2,100),
elements([2,3])]}}

|| S#state.invoices /= []]).

State transitions

In the state of the model we save all keys needed in consecutive

operations.

initial_state() ->
#state{invoices = [], kcases = [],

pnos = [], pbals = [], deleted = [],
blacklisted = [], pay_plans = [], rejecte = []}.

We save the state variables each time we invoke a command created by the We save the state variables each time we invoke a command created by the

command generator, e.g.:

next_state(S, _, {call, _, activate_reservation,
[Ocr, _Items, Pno]}) ->

S#state{invoices = [Ocr | S#state.invoices],
pnos = [Pno |S#state.pnos]};

RESULTS

• 43 of 87 tables considered

• ER diagram with 23 entities, 36 relations and

250 attributes

• 24 constraints formalized, of which 8 were • 24 constraints formalized, of which 8 were

irrelevant or not true (gained system knowledge)

• Two constraints revealed errors when tested

with QuickCheck

Quis custodiet ipsos

custodies?

Several constraints passed very many tests.

• How do we know our specification makes

sense?sense?

• We used Fault injection (both compile time

and runtime injections) to see if the

QuickCheck model would identify the injected

fault.

Quis custodiet ipsos

custodies?

Example constraint:

SELECT invoice.pno
FROM invoice, estore_data
WHERE (invoice.eid = estore_data.eidWHERE (invoice.eid = estore_data.eid

AND NOT (invoice.pno in
estore_data.customers))

Whenever a new customer makes a purchase in the
estore, s/he is added to the list of customers in the
estore_data table of the corresponding estore.

Quis custodiet ipsos

custodies?

Injected fault: change source code such that
estore_data is emptied each time a new invoice is
added.

rather

brute

QuickCheck detected the fault and gave a short
sequence leading to it.

.... the existing traditional regression test suite did
not notice the fault but this fault would be noticed immediately in operation

Summary

In order to test database applications one can use the
following method:

• Reverse engineer the database to obtain an ER model.

• Analyze the ER model to determine initial data constraints.

• Analyze the source code to identify other business logic • Analyze the source code to identify other business logic
constraints.

• Verify the obtained constraints with the developers

• Create local version of interface functions

• Design state machine model

• Run QuickCheck

Conclusions

• Identification and validation of data constraints often done
informally; without tools ER models and constraints in
comments are quickly outdated.

• In our case: Infrastructure setup accounted for roughly 20% of
the effort, compared to 80% spent on studying the system and
elicitation of constraints.elicitation of constraints.

• Robust and versatile test value generation mechanisms provided
by QuickCheck allow to identify failing constraints even in
intensively used, well tested systems.

• QuickCheck specification is comprehensive documentation of
constraints.

Disclaimer: The code snippets used in the paper have been altered and do not
represent the actual code base used within the project.

