Automatic Testing of TCP/IP Implementations
using Quickcheck
Erlang Workshop 2009

Javier Paris! Thomas Arts?

javierparis@udc.es thomas.arts@quvig.com

LUniversity of A Corufia

2|T University of Gothenburg and Quviq AB

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Introduction

@ Introduction

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Introduction

What's the Problem?

@ When developing a protocol stack (e.g. a TCP/IP Stack) =>
How to test?
@ Test scenario for checking a protocol stack:
o The stack we want to test (the subject).
e The network.
e A peer.

Host

App App Router E App

Peer
TCP/IP Stack

Subject
TCP/IP Stack

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Introduction

TCP/IP Overview

Layered protocol stack:
@ Several different protocols

@ Each protocol uses the inmediate lower level to provide
services to the upper level.

@ The network is abstracted as we go up.

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Introduction

TCP/IP Overview: Link Layer

Link layer provides communication between directly connected
devices. (e.g. Ethernet, ppp).

Router

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Introduction

TCP/IP Overview: Network Layer

Network layer provides packet communication over different
networks (e.g. IP) => no guarantees of delivery, order, data may
be duplicated.

Best effort, but no guarantees.

Router

Netl Net2

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Introduction

TCP/IP Overview: Transport Layer

Transport layer provides communication between applications in
different parts of the network (e.g. TCP) => Guarantees delivery,
order, rate control, reordering. Abstracts the network a lot
(stream-like interface)

Netl

[\ ! [

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Introduction

TCP/IP Overview: TCP

TCP uses stateful connnections and its behaviour is given by a fsm:

Connect/Syn

Listen/-

ISYN_RECEIVED LISTEN

Syn/Syn+Ack

Syn+Ack/Ack

Fin/Ack
Close/Fin

CLOSING CLOSE_WAIT

Fin/Ack

FIN_WAIT_1

Fin+Ack/Ack
Ackl- Add- Close/Fin
FIN_WAIT_2 TIME_WAIT LAST_ACK
Fin/Ack
Timeout Ack/-

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Introduction

Writing Tests Manually

@ Usual interaction with a stack is through an API (socket API).

@ Some behaviours we want to observe cannot be generated by
using the APl => Must inject traffic manually into the
network.

@ There are complex conditions that cannot be observer through
the APl => Checking for correctness requires looking at the
actual network traffic.

@ It is difficult to create static test cases because there are many
independent actors.

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Introduction

@ To generate and check test cases automatically.

@ To be able to check strange conditions which are difficult to
create in the network (e.g. malformed packets)

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Testing TCP with Quickcheck

© Testing TCP with Quickcheck

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Testing TCP with Quickcheck

Getting Quickcheck in the Picture

@ Quickcheck provides a module for testing finite state
machines, and TCP connections behave like a pair of
interlocked FSMs (one for each peer).

@ We can test by writing a FSM module that follows the state
of the TCP stack under test.

@ Quickcheck and this module act as the peer of the
connection, by checking the received packets and generating
suitable replies.

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Testing TCP with Quickcheck

Test Setup

Tester Subject

» Subject Controller

Open, Close,
Send... Open, Close,|
(Through a

separate Conn) Subject TCP/1P

Ethernet Frames Ethernet Frames

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Testing TCP with Quickcheck

Quickcheck FSM (I1)

@ The Quickcheck TCP module will not provide a full TCP
implementation. Replies are generated based on previously
received and sent packets.

@ By controlling the subject stack through its API, and
generating the packets using the TCP module we can move
the TCP state of the subject wherever we want. Example: we
can generate a simultaneous close easily:

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Testing TCP with Quickcheck

Quickcheck FSM (III)

Simulation of simultaneous close:

Subject Quickcheck TCP
fin 1,ack 1

/

fin 1, ack 1

fin1,ack 1
fin 1, ack 1

\

ack 2 ack 2 :> &2

/

ack 2

\

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Testing TCP with Quickcheck

Quickcheck FSM (III)

For each possible state we must provide Quickcheck with:
@ The possible transitions to other states.
@ A set of preconditions for each transition.

e How to actually perform the transition (that is, a function
that performs whatever tasks are necessary).

@ Postconditions to check after the state transition.

@ A description of the changes on the state as a result of the
transtition.

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Example: Connection Establishment

© Example: Connection Establishment

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Example: Connection Establishment

Example: Connection Establishment

Example: Test a connection establishment started by the subject.

Tester Subject

/

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Example: Connection Establishm

Example: Connection Establishment (I1)

CLOSED

Listen/- Connect/Syn

{SYNJ{ECE[VEDH[LISTEN]

Syn/Syn+Ack

Syn+Ack/Ack

Fin/Ack
Close/Fin

Fin/Ack

FIN_WAIT_1 CLOSE_WAIT

Fin+Ack/Ack
Ack/- Ack/- Close/Fin
{FIN,WAITJ 'l'lMEﬁWA['[‘} {LAS‘LACK]
Fin/Ack
Timeout Ack/-

Javier Paris, Thomas Arts

Example: Connection Establishment

Example: Connection Establishment (I11)

We describe the possible transtitions from CLOSED:

closed(S) —->
[{syn_sent,
{call, ?7MODULE, open,
[S#state.ip, S#state.port, {var, listener},
{var, sut}1}},
{syn_rcvd,
{call, ?MODULE, listen,
[S#state.sut_ip, S#state.sut_port, S#state.ip,
S#state.port, {var, listener}, {var, sut}]}}

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Example: Connection Establishment

Example: Connection Establishment (1V)

For starting a connection the open function would be called to:
e Call the open function through the subject API to start a
connection (e.g. gen_tcp:connect)
@ Listen for the incoming syn packet that the previous call
caused.

Tester Subject

%
w‘
%

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Example: Connection Establishment

Example: Connection Establishment (V)

Now we check that the subject did it right by looking at the syn
packet:

postcondition(closed, syn_sent, S,
{call, 7MODULE, open, [Ip, Port, _, _1}, Syn) ->
check_flags(Syn, [syn]) and
(Syn#tcp.dst_ip==Ip) and
(Syn#tcp.dst_port==Port) and
(Syn#ttcp.data == <<>>);

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Example: Connection Establishment

Example: Connection Establishment (VI)

Before transitioning to the next state (SYN_SENT) we update the
state:

next_state_data(closed, syn_sent, S, Syn,
{call,_,_,_}) —>
S#tstate{last_msg = Syn};

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Example: Connection Establishment

Example:Connection Establishment (VII)

The Quickcheck FSM now transitions to the SYN_SENT state:

Listen/- Connect/Syn

ISYN_RECEIVED LISTEN

Syn/Syn+Ack

Syn+Ack/Ack

Fin/Ack
Close/Fin
Fin/Ack
FIN_WAIT_1 CLOSING] [CLOSE,WAIT}
Fin+Ack/Ack
Ackl- Adl- Close/Fin
FIN_WAIT_2 TIME_WAIT LAST_ACK
Fin/Ack
Timeout Ack/-

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Example: Connection Establishment

Example: Connection Establishment (VIII)

We are now in the SYN_SENT state, from where there is only one
possible transition:

syn_sent(S) ->
[{established,
{call, 7MODULE, syn_ack,
[{var, listener}, S#state.last_msg]}}

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Example: Connection Establishment

Example: Connection Establishment (1X)

In this state we must
@ Create a packet to reply to the syn we received in the previous
state. Note that we do not implement a TCP stack, we build
the packet using values from the received packet.
@ Listen for the ack that the subject will send us.

Tester Subject

%
w‘
%

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Example: Connection Establishment

Example: Connection Establishment (X)

We now check the ack we received:

postcondition(syn_sent, established, S,

{call, 7MODULE, syn_ack,[_, Synl},Ack) ->
check_flags(Ack, [ack]) and
(Ack#tcp.seq==nxt_seq(Syn)) and
(Ack#tcp.ack==1) and
(Ack#tcp.data==<<>>);

The state will be updated in a similar way to the previous state.

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Example: Connection Establishment

Example: Connection Establishment (XI)

The Quickcheck FSM now transitions to the ESTABLISHED state:

Listen/- Connect/Syn

ISYN_RECEIVED LISTEN

Syn/Syn+Ack

Ack- Syn+Ack/Ack

Fin/Ack
Close/Fin

Fin/Ack

FIN_WAIT_1 CLOSING] [CLOSE,WAIT}

Fin+Ack/Ack
Ack/- Ack/- Close/Fin
FIN_WAIT_2 TIME_WAIT LAST_ACK
Fin/Ack
Timeout Ack/-

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Conclusions

@ Conclusions

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Conclusions

Real World Stuff

@ Run tests on the Linux kernel stack: everything was ok (to be
expected).
@ Run on our Erlang TCP/IP stack: One bug found!
e Arised on several passive closing of connections using the same
port number, which were treated as one single connection.
e What we learnt:
e It found a bug that we did not know about (good!)

e Shrinking did not work very well => It made finding the
actual problem hard (bad!). Shrinking has to be improved.

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Conclusions

Conclusions

@ Automatic testing for protocols provides:

e More comprehensive testing.

o Testing of features difficult to test by hand (simulation of
strange conditions like simultaneous closing because we control
the injection of packets).

@ Negative conditions are easier to test because we build and
decide when reply packets are sent (packet loss, corruption,
malformed packets).

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

Conclusions

Thanks!

Get it at http://www.madsgroup.org/ paris/tcpcheck.zip

Javier Paris, Thomas Arts Testing of TCP/IP Implementations with Quickcheck

	Introduction
	Testing TCP with Quickcheck
	Example: Connection Establishment
	Conclusions

