Improving your (test)
code with Wrangler

Huiging Li, Simon Thompson
University of Kent

Andreas Schumacher
Ericsson Software Research

Adam Lindberg
Erlang Training and Consulting

University of | x
Te St Kent Ctm\puting

property based testing

University of | x
Te St Kent Com\puting

property based testing

Overview

Refactoring.

The Wrangler tool.

Clone detection.

Why test code?

Case study of SIP message manipulation tests.

General lessons.

property based testing

L.

Computing

University of
ProTesty Kot

“It’s all in the code, stupid”

Functional programs
embody their design
in their code.

Successful
programs evolve ...

... as do their tests,
makefiles etc.

Test

property based testing

Toop(Frequencies) ->
receive
{request, Pid, allocate} ->

{NewFrequencies, Reply} = allocate(Frequencies,

reply(Pid, Reply),
Toop(NewFrequencies) ;

{request, Pid , {deallocate, Freq}} ->
NewFrequencies=deallocate(Frequencies, Freq),
reply(Pid, ok),

Toop(NewFrequencies) ;

{'EXIT', Pid, _Reason} ->
NewFrequencies = exited(Frequencies, Pid),
Toop(NewFrequencies) ;

{request, Pid, stop} ->
reply(Pid, ok)

end.

exited({Free, Allocated}, Pid) ->
case lists:keysearch(pPid,2,Allocated) of
{value, {Freq,Pid}} ->

Pid),

NewAllocated = Tists:keydelete(Freq,1,Allocated),

{[Freq|Free],NewAllocated};
false ->
{Free,Allocated?}
end.

University of

Kent

A

Com\puting

Soft-Ware

There’s no single
correct design ...

.. different options
for different
situations.

Maintain flexibility as
the system evolves.

property based testing

10

r—\nt\%}

Refactoring

Refactoring means changing the
design or structure of a program ...
without changing its behaviour.

Refactor

property based testing

Generalisation and renaming

-module (test). -module (test).
-export([£/1]). -export([£f/1]).
add_one ([H|T]) -> add_int (N, [H|T]) ->
[H+1 | add_one(T)]; [H+N | add int(N,T)];
add_one ([]) -> []. add_int (N,[]) -> [].
f(X) -> add_one(X). f(X) -> add int(1, X).
Test Kent S

property based testing

(Generalisation

—export([printList/1]). —export([printList/2]).

printList([H|T]) -> ‘ printList(F, [H|T]) ->

io:format("~p\n",[H]), F(H),
printList(T); printList(F, T);
printList([]) -> true. printList(F,[]) -> true.
printList([1,2,3]) printList(
fun(H) ->
io:format("~p\n", [H])
end,
[1,2,3]).

A

Test Kent &

property based testing Computing

L.

Computing

University of
ProTesty Kot

Refactoring tool support

Bureaucratic and
diffuse.

Tedious and error
prone.

Semantics: scopes,
types, modules, ...

Undo/redo

Enhanced creativity

property based testing

Wrangler

Refactoring tool for Duplicate code
Erlang detection ...

Integrated into Emacs and elimination

and Eclipse Testing / refactoring
Multiple modules "Similar" code
identification

Structural, process,
macro refactorings Property discovery

Univer

Te St K—O.ilt]y-otf C\\o;n\putmg

eeeeeeeeeeeeeeeeeeee

Static vs dynamic

Aim to check conditions statically.

Static analysis tools possible ... but some
aspects intractable: e.g. dynamically
manufactured atoms.

Conservative vs liberal.

Compensation?

University of | x
Te St Kent C\o;n\puting

property based testing

Architecture of Wrangler

Test

property based testing

Program
Source
Code

Program
Renderer

Refactorer

AST
annotation

University of

Kent

A

Com\puting

® Aquamacs File

Edit Options Tools m Inspector Erlang Window Help

Yo la)

New Open Recent Revert Save

public_blog_ctrl.erl public.erl

-spec display_by_year([{blog_id, pos_integer()} |
{"template’, string()}.

([{year, Year}, {blog.id, |}
wpart: fset("message_type", none),
#blog{title = BlogTitle, parent_id = [Sectio
BlogEntries = wtype_blog_entry:read_by_year(
wpart:fset("blog_id", [N,
wpart:fset("blog_title", BlogTitle),
wpart:fset("blog_entries"”, BlogEntries),
BlogYears = wtype_blog:years(
wpart: fset("blog_years", BlogYears),
set_parent(SectionParentld),

BaseBlogLink = core_utils:build_link(blog,
wpart: fset("base_blog_link", BaseBloglLink),

pre e, »

o O -
-:-- public_blog_ctrl.erl
erl-output *Completions* ’
Searching for caller function of public_blog_ctr

Checking client modules in the following paths:
["/Users/bian/erlang/erlangbook/apps/public/™]

: this module does not have any client mo
The selected function is not called by any other

Search for long functions in the current buffer.

44% (100,41) Hg-1426 (

Rename Variable Name

Rename Function Name

Rename Module Name

Generalise Function Definition
Move Function to Another Module
Function Extraction

Fold Expression Against Function

Tuple Function Arguments

Rename a Process (beta)

Add a Tag to Messages (beta)
Register a Process (beta)

From Function to Process (beta)

Detect Identical Code in Current Buffer
Detect Identical Code in Dirs

Identical Expression Search

Detect Similar Code in Current Buffer
Detect Similar Code in Dirs

Similar Expression Search

Introduce a Macro
Fold Against Macro Definition
Normalise Record Expression

Undo C-cC-_

. re that this is correct!
Customize Wrangler

Version

The following function(s) have more than 10 lines of code:
:display/1,public_blog_ctrl:display_by_year/1,public_blog_ctrl:display_entry/1,public_blog_ctrl:load_ne

ws/0.

1:** *erl-output*

Bot (307,60) (Fundamental Compilation)

Integration with ErlIDE

Tighter contro
of what's a
project.

Potential for
adoption by
newcomers to
the Erlang
community.

Test

property based testing

Erlang - test/src/syntax.erl - Eclipse SDK - /Users/simonthompson/Documents/workspace

J e Q- Q- J ¥ J =12 2] Erlang & Java
[Erlang Navigator 53 \ = B[4 syntax.erl 53 =5 5 Outline 837\\, BN w W= [w}
=R 4 % Formula constructors. © module: syntax
& test % (Form,Form) -> Form ¢ export
(= ebin record_definition: conj
(= include makeConj(L, R) -> #conj{andl=L, and2=R}. record_definition: dis]
(= src record_definition: leaf
[3 brchep_vig_calls_ % (Form,Form) -> Form © record_definition: neg
modulegraph makeDisj(L, R) -» #disjforl - L, or2 = R}. @ form1/0
[4 syntax.erl @ form2/0
[tableau.erl % Form -> Form © makeConj/2 (L,R)
© module: tab © makeDisj/2 (L,R)
import: syn) makeNeg(N) -> #neg{neg = N}. © makelff/2 (L,R)
o import: utili % String -> Form © makelmp/2 (L, R)
o import: lists © makeLeaf/1 (L)
o export makeLeaf(L) -> #leaf{leaf = L}. © makeNeg/1 (N)
@ rule/l @ printFormula/1
& neg/l (L % Derived constructors for => and <=> © showFormula/1
@ ruleBranch/ % (Form,Form) -> Form @ simplify/1
@ ruleBranche © testl/0
@ build/1 (Fs makeImp(L, R) -> makeDisj(makeNeg(L), R). @ test2/0
@ loop/l (Tat
e contra/l % (Form,Form) -> Form)]
@ consis/1 (B \wrre N PP - N x Y
@ remContras, =
© showTab/1 [2(Problems &2 \E‘ Console] (& Process list view| (& Live Expressionsk‘ v =)
® showBranck 0items
[4 testerl Description 4 Resource Path Location Type
|4 utilities.erl
<>
[y | refresh: (66%) ¢
University of | x
Kent &
Computing

L.

Computing

University of
ProTesty Kot

‘Code smells’

Bad smell ... time to refactor?

- Name does not reflect the meaning
 Function too long

« Code not actually used

- Bad module structure

» Excessive nesting

* Duplicated code

property based testing

Duplicate code considered harmful

* Increases the probabillity of bug
propagation.

* |ncreases the size of the source code
and the executable.

* Increases compile time.
* Increases the cost of maintenance.

But it’'s not always a problem ...

University of | x
Te St Kent C\o;n\puting

property based testing

Clone detection

The Wrangler clone detector
- relatively efficient
- no false positives
Interactive removal of clones ...
. under user guidance.

Integrated into the development environment.

Test Kent

property based te Cmptg

What is ‘identical’ code?

variable+number

PN

X+ 5

|dentical if values of literals and variables
ignored, but respecting binding structure.

property based testing Computin

What is ‘similar’ code?

X+Y

PN

(X+3)+4 4+ (5-(3*X))

The anti-unification gives the (most specific)
common generalisation.

property based testing Computing

Detection Expression search

All clones in a project All instances similar to
meeting the threshold this expression ...

arameters
P ... and their common

... and their common generalisation.
generalisations.

Default threshold: Default threshold:

> 5 expressions and > 20 tokens.
similarity of = 0.8.

property based testing

L.

Computing

University of
ProTesty Kot

Why test code particularly?

Many people touch the code.

Write some tests ... write more by copy,
paste and modify.

Similarly with long-standing projects, with
a large element of legacy code.

Te S t University of Q
Kent &
eeeeeeeeeeeeeeeee ing n Computing

“Who you gonna call”?”

Can reduce by 20% just by aggressively
removing all the clones identified ...

... what results is of no value at all.

Need to call in the domain experts.

University of | x
Te St Kent Ctm\puting

property based testing

SIP case study =1 =1 =

Session Initiation i "
Protocol SIP Message —— B> Driver | P SIP Message’

SIP message processing allows rewriting
rules to transform messages.

SIP message manipulation (SMM) is
tested by smm SUITE.erl, 2658 LOC.

University of | x
Test kent &

Reducing the case study

property based testing

OO B~ W DN

2658
2342

2231

22
22

7
6

O O 0O N O

2218

2203

2201

5
5

83
49

11 2131
12 2097
13 2042

Computing

Step 1

The largest clone
class has 15
members.

The suggested
function has no
parameters, soO
the code is
literally repeated.

Test

property based testing

@00 *erl-output*

[O & w @

Cl

New Open Recent Save Undo Redo Cut Copy Paste

Similar detection finished with *** 43 *** clone(s) found.

/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:

196.4-202.71: This code h

as been cloned 15 times:

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

377.4-383.71:

/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:

693.4-699.71:

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

755.4-761.71:

/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:

807.4-813.71:

/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:

904.4-910.71:

/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:

988.4-994.71:

/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:

1084.4-1090.

71:

/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:

1497.4-1503.

71:

/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:

1585.4-1591

.71:

/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:
/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

1719.4-1725.
1803.4-1809.

71:
71:

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

2026.4-2032.

71:

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

2143.4-2149.

71:

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:

2284.4-2290.

71:

/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:

2428.4-2434.

71:

The cloned expression/function after generalisation:

new_fun() ->

SetResult = ?SMM_IMPORT_FILE_BASIC(?SMM_RULESET_FILE_1, no),

?TRIAL(ok, SetResult),
AmountOfRuleSets = ?SMM_RULESET_FILE_1_COUNT,

?0M_CHECK(AmountOfRuleSets, ?MP_BS, ets, info, [sbgRuleSetTable, size]),
?0M_CHECK(AmountOfRuleSets, ?SGC_BS, ets, info, [smmRuleSet, size]),

AmountOfRuleSets.

-:** *erl-output* 9% (237,0) (Fundamental Compilation)

University of

Kent

(N

Computing

Not step 1

erl-output

O e L ONC I 0 (7
The Iargest Clone New Open Recent Save Undo Redo Cut Copy Paste Help

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:2139.4-2227.28: This code

haS 88 IineS, and has been cloned once:

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:2280.4-2368.32:

2 parameters_ fThe cloned expression/function after generalisation:

new_fun(NewVar_1, NewVar_2) ->
2COMMENT(
. NewVar_1, [1),

But What doeS It RSSetResult = ?SMM_IMPORT_FILE_BASIC(?SVM_RULESET_FILE_1, no),

?TRIAL(ok, RSSetResult),
t? AmountOfRuleSets = ?SMM_RULESET_FILE_1_COUNT,

represe nt" 20M_CHECK(AmountOfRuleSets, 2MP_BS, ets, info, [sbgRuleSetTable, sizel),
?0M_CHECK(AmountOfRuleSets, ?SGC_BS, ets, info, [smmRuleSet, size]),
FilterStateAtom = notUsed,
FilterNamel = y

Wh ” : f? CreateFilterl = ?SMM_CREATE_FILTER(FilterNamel),

at to Ca It . ?TRIAL(ok, CreateFilterl),
{ok, FilterKeyl} = ?SMM_NAME_TO_KEY(smmFilter, FilterNamel),
FilterName2 =

CreateFilter2 = ?SMM_CREATE_FILTER(FilterName2),

BeSt to Work ?TRIAL(ok, CreateFilter2),
{ok, FilterKey2} = ?SMM_NAME_TO_KEY(smmFilter, FilterName2),

FilterState = ?SMM_FILTER_STATE(FilterStateAtom),

bOttom u 20M_CHECK([#sbgFilterTable{key=FilterKeyl,
p ' sbgFilterName=FilterNamel,]

sbgFilterState=FilterState}],
?MP_BS, ets, lookup, [sbgFilterTable, FilterKeyl]), A
?0M_CHECK([#sbgFilterTable{key=FilterKey2, v
-:** *ar|-output* 97% (2165,0) (Fundamental Compilation) |

University of | A
Test Kent ...
property based testing Computing

The general pattern

ldentify a clone.

Introduce the corresponding
generalisation.

Eliminate all the clone instances.

So what’s the complication?

University of | x
Test Kent &

eeeeeeeeeeeeeeeeeeee

Step 3

23 line clone occurs:
choose to replace a
smaller clone.

Rename function
and parameters,
and reorder them.

new_fun() ->

{Filterkeyl, FilterNamel, FilterState, Filterkey2,

FilterName2} = create_filter_12(Q),
?0M_CHECK ([#smmFilter{key=Filterkeyl,
filterName=FilterNamel,
filterState=FilterState,
module=undefined}],

?SGC_BS, ets, Tlookup, [smmFilter, Filterkeyl]),

?0M_CHECK ([#smmFilter{key=Filterkey2,
filterName=FilterName2,
filterstate=FilterState,
module=undefined}],

?SGC_BS, ets, Tlookup, [smmFilter, FilterKkey2]),

?0M_CHECK ([#sbgFilterTable{key=Filterkeyl,
sbgFiTlterName=FilterNamel,
sbgFilterState=FilterState}],

?MP_BS, ets, lookup, [sbgFilterTable, FilterKkeyl]),

?0M_CHECK ([#sbgFilterTable{key=Filterkey2,
sbgFiTlterName=FilterName2,

check_filter_exists_in_sbgFilterTable(Filterkey, FilterName, FilterState) ->

?0M_CHECK ([#sbgFilterTable{key=FilterKkey,

Test

property based testing

sbgFiTlterName=FilterName,
sbgFilterState=FilterState}],
?MP_BS, ets, Tlookup,

[sbgFilterTable, Filterkey]).

University of

Kent

AL

<
Computing

Steps 4, 5

2 variants of check_filter_exists_in_sbgFilterTable ..

 Check for the filter occurring uniquely in the table: call to
ets:tab21ist instead of ets:Tookup.

- Check a different table, replace sbgFilterTable by
smmFilter.

- Don’t generalise: too many parameters, how to name?

check_filter_exists_in_sbgFilterTable(Filterkey, FilterName, FilterState) ->
?0M_CHECK ([#sbgFilterTable{key=FilterKkey,
sbgFiTlterName=FilterName,
sbgFilterState=FilterState}],
?MP_BS, ets, lookup, [sbgFilterTable, FilterKey]).

Test Kent &

property based testing Computing

Step 6

Symbolic calls to deprecated code: erTang:module_Tloaded

erlang:module_loaded(M) -> true | false
code:is_loaded(M) -> {file, Loaded} | false

Re-define the function code_is_Tloaded:

code_is_loaded(BS, ModuleName, false) ->
?0M_CHECK(false, BS, code, is_loaded, [ModuleName]).
code_is_loaded(BS, ModuleName, true) ->
?0M_CHECK({file, atom_to_list(ModuleName)}, BS, code,
1s_loaded, [ModuleName]).

Test Kant

property based testing

0

/

orTTputing

Step 7

Different checks: 70M_CHECK VS ?CH_CHECK

code_is_loaded(BS, om, ModuleName, false) ->
?0M_CHECK(false, BS, code, is_loaded, [ModuleName]).
code_is_loaded(BS, om, ModuleName, true) ->
?0M_CHECK({file, atom_to_list(ModuleName)}, BS, code,
1s_loaded, [ModuleName]).

But the calls to 7om_cHECK have disappeared at step 6 ...
. a case of premature generalisation!

Need to inline code_is_Tloaded/3 to be able to use this ...

Test Kent S...

property based testing

Step 10

‘WidOWS’ and new_fun(FilterName, Newvar_1l) ->

FilterKey = ?SMM_CREATE_FILTER_CHECK(FilterName),

‘orphans’ in clone %%Add rulests to filter

RuleSetNameA = "a",
] . . RuleSetNameB = "b",
identification. RUTesetNameC = "C" .
RuleSetNameD = "d",

. 16 Tines which handle the rules sets are elided ...
%%Remove rulesets
Newvar_1,

AVO|d paSS|ng {RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD, FilterKey}.
commands as
pal’ame’[erS? new_fun(FilterName, Filterkey) ->
%%Add rulests to filter
RuleSetNameA = "a",
RuleSetNameB = "b",
RuleSetNameC = "c",
Also at step 11. RulesetNameD = "d",

. 16 Tines which handle the rules sets are elided ...
%%Remove rulesets

{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD}.

AL

N
Computing

Test Kant

property based testing

Steps 14+

Similar code detection (default params):
16 clones, each duplicated once.
193 lines in total: get 145 line reduction.

Reduce similarity to 0.5 rather than the
default of 0.8: 47 clones.

Other refactorings: data etc.

University of | x
Test Kent S

property based testing

L.

Computing

University of
ProTesty Kot

Property extraction

Fitting into the ProTest
project: move from test
cases to properties in
QuickCheck.

Use Wrangler to spot
clones, and to build
properties from them.

property based testing

Support property
extraction from 'free'
and EUnit tests.

ldentifying state
machines implicit in
sets of test cases.

Refactoring and testing

Refactor tests
themselves, e.g.

* Turn tests into EUnit tests.

» Group EUnit tests into a
single test generator.

* Move EUnit tests into a
separate test module.

 Normalise EUnit tests.
« Extract common setup and

tear-down into EUnit fixtures.

Test

property based testing

Respect test code In
EUnit, QuickCheck
and Common Test ...

... and refactor tests
along with code
refactoring.

University of | x

o
Ken Com\putmg

Conclusions

Possible to improve code using clone
removal techniques ...

... but only with expert involvement.

Not just test code ... but it’s particularly
applicable there.

Hands on demo and tutorial tomorrow.

University of | x
Test Kent S

property based testing

http://www.cs.kent.ac.uk/projects/wrangler/

University of | x
Tes.t Kent C\o'm\puting

