
11/3/2009

1

Tokyo Cabinet and CouchDB 
with Mnesia
by Rickard Cardell

Tokyo Cabinet

- Key-value store 
- space efficient
- several storage types:

Hash, B+tree and more
- several API:s: Perl, Java, Ruby, LUA, Erlang
- apps for distributing: Tokyo Tyrant
- used by large community



11/3/2009

2

Tokyo Cabinet cont.

- disk resident - both in RAM and on disk
- need sync() for resident storage
- no repair of broken tables
- mmap() - memory mapped file

CouchDB -basic features

- made in Erlang!
- HTTP Restful interface
- replication
- non-sql
- views for queries
- documents for storage
- no type constraints in database
- MVCC -MultiVersionConcurrencyControl

- revisions 
- no locks or transactions
- conflict resolution on application level

- non destructive updates 
- much more.. 



11/3/2009

3

Mnesia's shortcomings

- infamous 2GB table limit of DETS

- ETS is RAM hungry

- repair broken table takes time

Prerequisites

- a large system highly integrated with Mnesia
- had to integrate my solution to the system

- replacing Mnesia is a big effort
- all data stored in tables as Erlang terms
- need to replace lots of mnesia:select to X:select
- table definitions as records - untyped
- complex relations between tables

- How to solve this?
- Use a totally different DBMS

or
- Replace ETS and DETS in Mnesia



11/3/2009

4

My solution

- make backends of Tokyo Cabinet and CouchDB 
- less code changes to the system 
- transparent to the user
- will make use of Mnesia locks and transactions 

- already an extension to Mnesia: MnesiaEX

MnesiaEX - Mnesia extension

- ability to apply arbitrary storage to Mnesia 
- almost transparent to the user
- adds a new storage type external_copies

- works together with current storage types
- ACID issues
- Tokyo Cabinet has already API: Tcerl



11/3/2009

5

Tokyo Cabinet with MnesiaEX -Tcerl

- API for Tokyo Cabinet B+tree:Tcerl

- written by Paul Mineiro
- used in production

- interface to Mnesia via linked-in-driver
- speed over uptime

- good support for mnesia's functions 
- select, match_object, read, write, next, previous ...

- ordered_set
- store the records as binaries
- sync or async writes 
- need clean exit

CouchDB with MnesiaEX - Cdberl

- implemented Mnesiaex behaviour for CouchDB
- named it Cdberl 

- Multi Version Concurrency Control means 
no locks/transactions
- ignored MVCC

- can't use replication
- can't use revisions

- using the HTTP interface
- Erlang terms to JSON
- cache revisions for faster updates 

- improvements to do: use bulk documents 



11/3/2009

6

Cdberl - impedance mismatch

- map/reduce want JSON, not binaries

- no direct translation from Erlang terms to JSON
- non trivial problem
- example: BigInt

Cdberl - queries

- a query needs a precomputed view

- mnesia:match_object -> create a view and then invoke
- not very dynamic
- long time to generate views



11/3/2009

7

Representing Erlang terms in JSON

Erlang JSON

atom, 
>asdf

string, 
>"asdf"

list (string), 
>"otp"

array, 
>[111,116,112]

Integer, 
>1234

>32-bit Integer/float
1234

tuple, 
>{1,2,3,4}

object with array, 
> {tuple, [1,2,3,4]}

example:
1>to_json({person, 1}).
"{obj:{tuple:[person, 1]}}"

Stress testing

- TPC-B, a standard DBMS benchmark / stress test
- measures transactions per second 
- updates to four tables per transaction

- 3 reads, 3 writes, 1 update
- serial transactions

- Account table, 100000 records/rows
- Teller table, 10 records/rows
- Branch table, 1 record/row
- History table, 0 records/rows from start



11/3/2009

8

TPC-B -result

Result:

- ram_copies: 5000tps
- disc_copies: 4200tps
- Tcerl (large cache): 2000tps 
- Tcerl (small cache): 1200tps

- disc_only_copies: 200tps
- Cdberl: 30 tps

Stress test -result cont.

Disk space of database files

Account table, 100000 records. Actual disk size:

Cdberl (CouchDB): 111MB / 30MB* 
disc_copies: 21MB
disc_only_copies: 15MB 
Tcerl (TokyoCabinet): 4MB
ram_copies: n/a

* before and after compaction



11/3/2009

9

My conclusion

- CouchDB
- robust storage
- easy to create powerful views
- easy to communicate with
- easy to replicate
- growing user base
- no load time on startup
- designed for parallell use 

- takes time to generate a view on large table
- no real dynamic queries 
- a bit slow write performance
- quite large files until compaction
- doesn't integrate well with Mnesiaex

My conclusion cont.

Tokyo Cabinet 

- integrates quite good with Mnesia
- although experienced memory leaks and crashes 

- good read and write performance 
- simple API
- very small database files
- no startup time on load

- little documentation
- only one developer
- must be synced to disk



11/3/2009

10

So...

- Mnesiaex is a fine interface
- very easy to apply other database manager

- Tokyo Cabinet and Tcerl need more investigation in regard to
durability issues.
- CouchDB, can be a part of the system, but probably not the 
general solution for Klarna

Questions?



11/3/2009

11

Appendix - misc info
Cdberl source code and information is located at GitHub: http://github.com/RCardell/cdberl
The TPC-B benchmark that I've used can also be found there. 

All tests ran for between 15minutes to 4hours, ~20 times per storage types until stable result was found. The 
tables was checked for consistency afterwards.
Test setup: 

Erlang/OTP R12B5 w. HiPE (default setup was fastest)
Mnesiaex 4.4.7.6 http://code.google.com/p/mnesiaex/
CouchDB 0.90

Tokyo Cabinet 1.4.21
- bucket number: 2-5 times n records 
- size of leaf node cache

small cache setup: smallest possible = 1
large cache setup: best result with n = ~5000x

Tcerl 1.3.1h http://code.google.com/p/tcerl/
Tcerldrv 1.3.1g

Ubuntu 9.04 64bit
1x4 Cores
8 GB RAM
2 SATA Disks Raid 0

Rickard.Cardell@gmail.com


