
QuickSpec: Formal Specifications for Free!

Generating equational specifications
from functional programs

Koen Claessen1, Nicholas Smallbone1, and John Hughes2

1 Chalmers University of Technology {koen,nicsma}@chalmers.se
2 Chalmers and Quviq AB rjmh@chalmers.se

Abstract. We present QuickSpec, a tool that automatically generates
algebraic specifications for modules consisting of pure functions. The
tool is based on testing, rather than static analysis or theorem proving.
The main application of QuickSpec is improving one’s understanding
of a module by exploring the laws that are generated. We demonstrate
this with two case studies: a heap library for Haskell and a fixed-point
arithmetic library for Erlang.

1 Introduction

Give us a module, any module, written in Haskell or Erlang, with a purely
functional API. Tell us the names and types of the exported functions. In just a
few seconds, we will give you in return an algebraic specification of your code, in
the form of equations that the functions in your API satisfy. What’s more, we
will do so with no static analysis—you need not even give us the source code.

The purpose of this paper is to explain the trick we use, and to show how
surprisingly well it works. Even though our method is based on testing, which
inherently means that it is unsound (some equations that are generated might
not actually hold in general), we are able to retain completeness in a certain
precise sense, which we will come back to later.

Let us begin with some examples to show what QuickSpec, our tool, can
do. We shall derive equations from well-known modules taken from the Haskell
and Erlang standard libraries.

Lists As a first example, we consider some of the standard list processing func-
tions in Haskell. When we use QuickSpec, we specify the functions and variable
names which may appear in equations, together with their types. For example,
if we generate equations over the list operators

(++) :: [Elem] -> [Elem] -> [Elem]

(:) :: Elem -> [Elem] -> [Elem]

[] :: [Elem]

using variables x, y, z :: Elem and xs, ys, zs :: [Elem], then Quick-
Spec outputs the following equations:

xs++[] == xs

[]++xs == xs

(xs++ys)++zs == xs++(ys++zs)

(x:xs)++ys == x:(xs++ys)

We automatically discover the associativity and unit laws for append (which
require induction to prove), and indeed these equations comprise a complete
characterization of the ++ operator. If we add the list reverse function to the
mix, we discover the additional familiar equations

reverse [] == []

reverse (reverse xs) == xs

reverse xs++reverse ys == reverse (ys++xs)

reverse (x:[]) == x:[]

Again, these laws completely characterize the reverse operator. Adding the
sort function from the standard List library, we derive the equations

sort [] == []

sort (reverse xs) == sort xs

sort (sort xs) == sort xs

sort (ys++xs) == sort (xs++ys)

sort (x:[]) == x:[]

The third equation tells us that sort is idempotent, while the second and fourth
strongly suggest (but do not imply) that the result of sort is independent of the
order of its input.

If we add a merge function for ordered lists, then we obtain an equation
relating merge and sort:

merge (sort xs) (sort ys) == sort (xs++ys)

We also obtain other equations about merge, such as the somewhat surprising
merge (xs++ys) xs == merge xs xs++ys. Note that this holds even for un-
ordered xs and ys, but is an artefact of the precise definition of merge.

Higher-order functions can be dealt with as well. Adding the function map
together with a variable f :: Elem -> Elem, we obtain:

map f [] == []

map f (reverse xs) == reverse (map f xs)

map f xs++map f ys == map f (xs++ys)

f x:map f xs == map f (x:xs)

Arrays QuickSpec has two implementations, one for Haskell and one for Er-
lang. Let us use our tool to investigate subsets of the API of the standard Erlang
library for purely functional, flexible arrays, indexed from zero [2]. Using the fol-
lowing signature3,

3 Although Erlang does not have a static type system, the notation used here is com-
monly used to specify “types” of Erlang functions in documentation

new() -> array()

get(index(),array()) -> elem()

set(index(),elem(),array()) -> array()

default_element() -> elem()

with variables X, Y, Z :: elem(), I, J, K :: index(), and
A, B, C :: array(), we obtained these laws:

get(I,new()) == default_element()

get(I,set(I,X,A)) == X

get(I,set(J,default_element(),new())) == default_element()

get(J,set(I,X,new())) == get(I,set(J,X,new()))

set(I,X,set(I,Y,A)) == set(I,X,A)

set(J,X,set(I,X,A)) == set(I,X,set(J,X,A))

The default_element() is not part of the arrays library: we introduced
it and added it to the signature after QuickSpec generated the equation
get(I,new()) == get(J,new()). Since the result of reading an element from
an empty array is constant, we might as well give it a name for use in other
equations. When we do so, then the equation just above is replaced by the first
one generated.

Some of the equations above are very natural: the second says that
writing an element, then reading it, returns the value written; the fifth
says that writing to the same index twice is equivalent to just writ-
ing the second value. The sixth says that writing the same value X
to two indices can be done in either order—but why can’t we swap
any two writes, as in set(J,Y,set(I,X,A)) =?= set(I,X,set(J,Y,A))?
The reason is that this equation holds only if I /= J (or if X == Y,
of course)! It would be nice to generate conditional equations such as
I /= J ==> set(J,Y,set(I,X,A)) == set(I,X,set(J,Y,A)) but at present
QuickSpec cannot do this.

The fourth equation, get(J,set(I,X,new())) == get(I,set(J,X,new())),
is a little surprising at first, but it does hold—either both sides are the default
element, if I and J are different, or both sides are X, if they are the same.

Finally, the third equation is quite revealing about the implementation:

get(I,set(J,default_element(),new())) == default_element()

A new array contains the default element at every index; evidently, setting an in-
dex explicitly to the default element will not change this, so it is no surprise that
the get returns this element. The surprise is that the second argument of get
appears in this complex form. Why is it set(J,default_element(),new()),
rather than simply new(), when both arrays have precisely the same ele-
ments? The answer is that these two arrays have different representations, even
though their elements are the same4. That the equation appears in this form
tells us, indirectly, that set(J,default_element(),new()) /= new() because
4 Only the Erlang version of QuickSpec behaves like this; the Haskell version uses

the ordinary (==) operator for equality testing.

if they were equal, then QuickSpec would have simplified the equation. In
fact, there is another operation in the API, reset(I,A), which is equivalent to
setting index I to the default element, and we discover in the same way that
reset(J,new()) /= new(). set and reset could have been defined to leave an
array unchanged if the element already has the right value—and this could have
been a useful optimization, since returning a different representation forces set
and unset to copy part of the array data-structure. Thus this missing equation
reveals a potentially questionable design decision in the library itself. This is
exactly the kind of insight we would like QuickSpec to provide!

The arrays library includes an operation to fix the size of an array, after
which it can no longer be extended just by referring to a larger index. When we
add fix to the signature, we discover

fix(fix(A)) == fix(A)

get(I,fix(new())) == undefined()

set(I,X,fix(new())) == undefined()

Fixing a fixed array does not change it, and if we fix a new array (with a size of
zero), then any attempt to get or set an element raises an exception5.

2 How QuickSpec Works

We hope the examples above have convinced the reader that useful insights can
be obtained by studying the equations that QuickSpec generates. Now we shall
explain the method we use to derive them. Surprisingly, no sophisticated theorem
proving methods are used—we discover our equations simply by testing the code
under analysis.

2.1 Equivalence classes of terms

A fundamental choice we made in our approach is that we reformulate our goal
from generating equations such as xs++[] == xs and []++xs == xs into gener-
ating equivalence classes such as {xs, xs++[], []++xs}. There is an immediate
advantage to this choice; we abstract away over arbitrary choices in the gener-
ated equations. For example, logically, it does not really matter if, instead of the
above two equations, we had generated xs++[] == []++xs and xs++[] == xs
because these two equations contain the same information.

Once we have the equivalence classes, it is a trivial process to generate equa-
tions. For each equivalence class, we pick one representative term r. Then, for
each other member t of that equivalence class, we generate the equation t = r.
So, an equivalence class with n terms generates n− 1 equations. Exactly which
representative r we choose does not really matter, but since the term r might
appear repeatedly in multiple equations, it is more appealing to the eye if r is

5 We consider all terms which raise an exception to be equal—and undefined() always
does so.

the smallest term in the equivalence class, according to some total ordering <
on terms.

The next question we have to answer is, what should the domain of the
computed equivalence relation be? The choice we made was that we simply
enumerate all terms up to a given depth, where variables and constants count
as having depth 1, and every function application adds a depth of 1. For most
applications, choosing depth 3 or 4 generates a set of terms of manageable size
to work with.

As a running example, let us consider a tiny list signature consisting of the
empty list [], the append operator ++, and two variables xs and ys, and a term
depth of 2. The following initial set of terms is produced:

{xs, ys, [], xs++xs, ys++ys, xs++ys, ys++xs,

xs++[], ys++[], []++xs, []++ys, []++[]}

The equation generator’s first job is to produce equivalence classes over these
terms.

Rather than generating equations that we know for certain do hold, which
would require static analysis or theorem proving, QuickSpec removes equations
that for certain do not hold, which only requires testing. The result is a set of
equations that seem to hold; the validity of the equations is approximated by
means of random testing.

Thus, QuickSpec applies a simple method using testing to partition the
set of terms up into equivalence classes. The method starts with only one big
equivalence class of which all terms are a member. Then, it enters a repeating
process, where at each step the equivalence relation is refined; each equivalence
class may be split into several new equivalence classes. Such a step is imple-
mented by generating a random test case, in which all variables are assigned
a random value of the right type, and subsequently evaluating all terms using
this assignment. We refine an existing equivalence class into several ones if it
turns out that some of its terms evaluate to different values than others. We
keep repeating this refinement process until the calculated equivalence relation
appears to be “stable”, when no more changes have occurred for an (arbitrarily
chosen) number of iterations.

For example, computing the set of equivalence classes for the tiny list API
above, we start with one big equivalence class, which consists of all terms. After
generating one random test, e.g. xs=[], ys=[1], this class is immediately split
up into several new ones:

{xs, [], xs++xs, xs++[], []++xs, []++[]} ([])

{ys, xs++ys, ys++xs, ys++[], []++ys} ([1])

{ys++ys} ([1,1])

We show the values that each new equivalence class evaluates to in parentheses.
One more random test case might choose xs=[1], ys=[2], and the result is:

{xs, xs++[], []++xs} ([1])

{[], []++[]} ([])

{xs++xs} ([1,1])

{ys, ys++[], []++ys} ([2])

{xs++ys} ([1,2])

{ys++xs} ([2,1])

{ys++ys} ([2,2])

Any further attempt to refine the above equivalence classes fails, and thus the
above is the final result. Generating equations from this equivalence relation
produces the following (note that equivalence classes with only one element do
not generate any equations):

xs++[] == xs []++xs == xs []++[] == []

ys++[] == ys []++ys == ys

We notice that the expected equations are there (the first two). We also see that
we have laws that are instances of other laws, and that we would rather not like
to see in the list of equations.

It turns out that generating the equivalence classes was actually the easy
part; the hardest part of generating equations is pruning away the unwanted
equations! This is what the next subsection describes how to do.

Before we look at how to prune the equations, let us take a step back to
see what we have done. We have computed an over-approximation of the actual
equivalence relation on terms. This means that our equivalence relation might
equate more terms than it should. This is because the random testing may not
have found a particular test case that would have separated an equivalence class.
As a result, our method is unsound; sometimes equations are generated that do
not hold. However, the method also discovers all equations between terms of a
particular depth, and never separates two equal terms into different equivalence
classes. In this sense, our method should be considered complete w.r.t. a chosen
term depth!

2.2 Pruning

The problem at this point is that we generate too many equations, and thus
we need a pruning principle that tells us which equations are safe to remove. It
is far from obvious what this pruning principle should be, as illustrated by the
following four guiding principles we used to come up with our pruning principle.

Lower bound We should not remove too many equations from the set. What
does “too many” mean here? At least, the final set of equations should still
logically imply all equations in the original set. Thus, a reasonable first choice
might be to find “the least subset of equations that logically imply all other
equations”. However, such a least set is not uniquely defined, and might not
even be computable.

Upper bound We should not remove too few equations. It is clear that any
equation that is directly implied by another equation (for example, because the
former is an instance of the latter) should be removed. However, should any
equation that is implied by a subset of the other equations be removed? It

happens quite often that a simple, appealing equation can be proven from a
number of more general, larger equations, by means of a complex proof, possibly
requiring induction. In that case, we might not want to remove the simpler
equation.

Implementability Checking whether or not an equation is logically implied by a
set of given equations is at best semi-decidable (depending on if and what kind
of induction principles are to be used in the proof). We are aiming for a fully
automatic method. Moreover, we want to create a practical tool to be used by
programmers; the answer should be computable in a matter of seconds (perhaps
minutes), not hours or days. So, whatever pruning principle we choose, it needs
to be efficiently implementable.

Predictability The design space for the pruning principle seems to be huge with
no obvious optimum, which suggests the use of heuristics. We want our method
to be predictable, so that we are able to draw conclusions from the absence or
presence of equations, and so that the user of the tool can influence and control
which equations are generated in an intelligible way.

The final algorithm we ended up with only removes a law if it can be derived
from simpler laws. This strategy makes it easy to avoid circular reasoning and
lends itself to efficient implementation. Ordering equations according to simplic-
ity is determined by a total order < on equations, which can be specified as a
parameter to the algorithm.

Our algorithm is based on a decidable and predictable approximation of logi-
cal implication for equations. The approximation uses a congruence closure data-
structure, a generalization of a union/find data-structure that maintains a con-
gruence relation6 over a finite subterm-closed set of terms. Congruence closure is
one of the key ingredients in modern SMT-solvers, and we simply reimplemented
an efficient modern congruence closure algorithm [8].

Congruence closure enjoys the following property: suppose we have a set of
equations E, and for each equation s = t we record in the congruence closure
data-structure ≡ the fact s ≡ t. Then for any terms a and b, a ≡ b will be
true exactly if a = b can be proved from E using only the rules of reflexivity,
symmetry, transitivity and congruence of =.

This almost gives us a way of checking whether a = b follows from E. How-
ever, we want to know whether a = b can be proved at all from E, not whether
it can be proved using some restricted set of rules. There’s one more rule we
could use in a proof, that’s not covered by congruence closure: any instance of a
valid equation is valid. To approximate this rule, for each equation s = t in E,
we should record not just s ≡ t but many instances σ(s) ≡ σ(t) (where σ is a
substitution).

In more detail, our algorithm is as follows:

6 A congruence relation is an equivalence relation that is also a congruence: if x ≡ y
then C[x] ≡ C[y] for all contexts C.

1. We maintain a congruence relation ≡ over terms, which initially is the iden-
tity relation. The relation ≡ is going to represent all knowledge implied by
accepted equations so far, so that if s ≡ t then s = t is derivable from the
accepted equations.

2. We order all equations according to the equation ordering <, simplest equa-
tions first.

3. We loop through all equations, starting at the simplest. For each equation
s = t, we check if s ≡ t according to the maintained congruence relation ≡.
If so, the equation s = t is implied by previous equations, and we discard it.

4. If s 6≡ t, we produce s = t as an equation. We then update the congruence
relation ≡ to represent the fact that we have produced the equation s = t. We
do this by picking a finite set of instances of s = t. That is, we choose a finite
set Σ of substitutions; then, for each σ ∈ Σ, we add the fact σ(s) ≡ σ(t) to
the congruence closure data-structure ≡.

5. Once all equations have been taken care of, we are done.

We didn’t specify above which instances of each equation s = t to generate.
Our algorithm uses the concept of the universe, which is the set of all terms gen-
erated in the testing phase. Our original choice was to generate all substitutions
σ such that σ(s) and σ(t) were in the universe. This allowed the algorithm to
find any proof that only uses terms from the universe.

Now, instead, we generate all substitutions σ such that σ(s) or σ(t) are in
the universe. By doing this, we allow the algorithm to reason also about terms
t that lie outside the universe, but only if that term t is equated by an equation
to a term s that lies inside the universe. This modification does not notice-
ably influence performance, but allowing this was vital to prune away equations
involving operators with structural properties, such as commutativity and as-
sociativity. For example, generating properties about the arithmetic operator +,
only allowing reasoning within the universe, we end up with:
1. x+y = y+x

2. y+(x+z) = (z+y)+x

3. (x+y)+(x+z) = (z+y)+(x+x)

The third equation can be derived from the first two, but we need to use a term
x+(y+(x+z)) that lies outside of the universe. Adding the modification we just
described to the algorithm, this last equation is also pruned away.

3 Case Study #1: Leftist Heaps in Haskell

A leftist heap [9] is a data structure that implements a priority queue. A leftist
heap provides the usual heap operations:
empty :: Heap

isEmpty :: Heap -> Bool

insert :: Elem -> Heap -> Heap

findMin :: Heap -> Elem

deleteMin :: Heap -> Heap

We decided to test an implementation of leftist heaps with QuickSpec, given
the operations above and variables h, h1, h2 :: Heap and x, y, z :: Elem.

The result QuickSpec generated a rather incomplete specification. The spec-
ification describes the behaviour of findMin and deleteMin on empty and sin-
gleton heaps:

findMin empty == undefined

findMin (insert x empty) == x

deleteMin empty == undefined

deleteMin (insert x empty) == empty,

shows that the order of insertion into a heap is irrelevant:

insert y (insert x h) == insert x (insert y h),

and otherwise only contains the following equation:

isEmpty (insert x h1) == isEmpty (insert x h)

Our aim for the rest of this section is to coax a better set of laws out of Quick-
Spec7. We start with the last equation above. From it we can prove a related
equation, isEmpty (insert x h) == isEmpty (insert y h)8. The two equa-
tions say that in the expression isEmpty (insert x h), you can replace x and
h by some other values y and h1 without affecting the result. So that expres-
sion should have a constant value. That value is of course False, and if we
just add False to our signature, then we get the real form of the previous law,
isEmpty (insert x h) == False9.

Generalising a bit, since isEmpty returns a Bool, it’s certainly sensible to
give QuickSpec operations that manipulate booleans. We added the remain-
ing boolean connectives True, &&, || and not, and one newly-expressible law
appeared, isEmpty empty == True.

Merge Leftist heaps actually provide one more operation than those we encoun-
tered so far: merging two heaps. We might as well add that to our signature:

merge :: Heap -> Heap -> Heap

If we run QuickSpec on the new signature, we get the fact that merge is com-
mutative and associative and has empty as a unit element:

merge h1 h == merge h h1

merge h1 (merge h h2) == merge h (merge h1 h2)

merge h empty == h

We get nice laws about merge’s relationship with the other operators:

7 For completeness, we will list all of the new laws that QuickSpec produces every
time we change the signature.

8 Both sides of this equation can be proved equal to isEmpty (insert x (insert y

h)).
9 In fact, QuickSpec prints a warning in this case advising the user to represent the

value isEmpty (insert x h) by a constant.

merge h (insert x h1) == insert x (merge h h1)

isEmpty h && isEmpty h1 == isEmpty (merge h h1)

We also get some curious laws about merging a heap with itself:

findMin (merge h h) == findMin h

merge h (deleteMin h) == deleteMin (merge h h)

These are all the equations that are printed. Note that there are no redundant
laws here. As mentioned earlier, our testing method guarantees that this set of
laws is complete, in the sense that any valid equation over our signature, which
is not excluded by the depth limit, follows from these laws.

With lists We can get useful laws about heaps by relating them to a more com-
mon data structure, lists. First, we need to extend the signature with operations
that convert between heaps and lists:

fromList :: [Elem] -> Heap

toList :: Heap -> [Elem]

fromList turns a list into a heap by folding over it with the insert function;
toList does the reverse, deconstructing a heap using findMin and deleteMin.
We should also add a few list operations

(++) :: [Elem] -> [Elem] -> [Elem]

tail :: [Elem] -> [Elem]

(:) :: Elem -> [Elem] -> [Elem]

[] :: [Elem]

sort :: [Elem] -> [Elem]

and variables xs, ys, zs :: [Elem]. Now, QuickSpec discovers many new
laws. The most striking one is

toList (fromList xs) == sort xs.

This is the definition of heapsort! We also get several laws that indicate that our
definitions of toList and fromList are sensible:

sort (toList h) == toList h

fromList (toList h) == h

fromList (sort xs) == fromList xs

fromList (ys++xs) == fromList (xs++ys)

The first law says that toList produces a sorted list, and the second that
fromList . toList is the identity. The other two laws suggest that the order
of fromList’s input doesn’t matter.

We get a definition by pattern-matching of fromList:

fromList [] == empty

insert x (fromList xs) == fromList (x:xs)

merge (fromList xs) (fromList ys) == fromList (xs++ys)

We also get a family of laws relating heap operations to list operations:

toList empty == []

head (toList h) == findMin h

toList (deleteMin h) == tail (toList h)

We can think of toList h as an abstract model of h. What this means is that
all we need to know about a heap is the sorted list of elements, and then we can
predict the result of any operation on that heap. The heap itself is just a fancy
representation of that sorted list of elements.

The three laws above define empty, findMin and deleteMin by how they act
on the sorted list of elements—the model of the heap. For example, the third
law says that applying deleteMin to a heap corresponds to taking the tail in
the abstract model (a sorted list). Since tail is obviously the correct way to
remove the minimum element from a sorted list, this equation says exactly that
deleteMin is correct10!

So these three equations are a complete specification of empty, findMin and
deleteMin! We should extend them to a full specification of heaps. To do so, we
add operators to insert an element into a sorted list, to merge two sorted lists,
and to test if a sorted list is empty. . .

insertL :: Elem -> [Elem] -> [Elem]

mergeL :: [Elem] -> [Elem] -> [Elem]

null :: [Elem] -> Bool

. . . and our reward is three laws asserting that insert, merge and isEmpty are
correct:

toList (insert x h) == insertL x (toList h)

mergeL (toList h) (toList h1) == toList (merge h h1)

null (toList h) == isEmpty h

We also get another law about fromList to go with our earlier collection:
fromList (mergeL xs ys) == fromList (xs++ys).

This section highlights the importance of choosing a rich set of operators
when using QuickSpec. There are often useful laws about a library that mention
functions from unrelated libraries; the more such functions we include, the more
laws QuickSpec can find. In the end, we got a complete specification of heaps
(and heapsort, as a bonus!) by including list functions in our testing.

It’s not always obvious which functions to add to get better laws. In this
case, there are several reasons for choosing lists: they’re well-understood, there
are operators that convert heaps to and from lists, and sorted lists form a model
of priority queues.

Buggy code What happens when the code under test has a bug? To find out,
we introduced a fault into toList. The buggy version of toList doesn’t produce
a sorted list, but rather the elements of the heap in an arbitrary order.

We were hoping that some laws would fail, and that QuickSpec would
produce specific instances of some of those laws instead. This happened: whereas
before, we had many useful laws about toList, afterwards, we had only two:
10 This style of specification is not new and goes back to Hoare [5].

toList empty == []

toList (insert x empty) == x:[]

Two things stand out about this set of laws: first, the law
sort (toList h) == toList h does not appear, so we know that the
buggy toList doesn’t produce a sorted result. Second, we only get equations
about empty and singleton heaps, not about heaps of arbitrary size. QuickSpec
is unable to find any specification of toList on nontrivial heaps, which suggests
that the buggy toList has no simple specification.

3.1 A trick

We finish with a “party trick”: getting QuickSpec to discover how to implement
insert and deleteMin. We hope to run QuickSpec and see it print equations
of the form insert x h = ? and deleteMin h = ?.

The trick needs some preparation; if we just run QuickSpec straight away,
we won’t get either equation. There are two reasons, each of which explains the
disappearance of one equation.

First, it’s impossible to implement deleteMin using only the leftist heap API,
so there’s no equation for QuickSpec to print. To give QuickSpec a chance,
we need to reveal the representation of leftist heaps; they’re really binary trees.
So we add the functions

leftBranch :: Heap -> Heap

rightBranch :: Heap -> Heap

to the signature. Of course, no implementation of leftist heaps would export
these functions, this is only for the trick.

Secondly, QuickSpec won’t bother to print out the definition of insert—it’s
easily derivable from the other laws, so QuickSpec considers it boring. Actually,
in most ways, it is pretty boring; the one thing that makes it interesting is that
it defines insert, but QuickSpec takes no notice of that.

Fortunately, we have a card up our sleeve: QuickSpec prints a list of defi-
nitions, equations that appear to define an operator in terms of other operators.
The real purpose of this is to suggest redundant operators, but we will use it to
see the definition of insert instead.

Everything in place, we run QuickSpec. And—hey presto!—out come the
equations

insert x h = merge h (insert x empty)

deleteMin h = merge (leftBranch h) (rightBranch h)

That is, you can insert an element by merging with a unit heap that just contains
that element, or delete the minimum element—which happens to be stored at
the root of the tree—by merging the root’s branches.

4 Case Study #2: Understanding a Fixed Point
Arithmetic Library in Erlang

While working on QuickSpec, we were sent an Erlang library for fixed point
arithmetic developed by a South African company. Since we were unfamiliar with
the code, and did not immediately understand the API, we decided to exper-
iment with QuickSpec as a program understanding tool. The library exports
16 functions, which is rather overwhelming to analyze in one go, so we decided
to generate equations for a number of different subsets of the API instead. In
this section, we give a fairly detailed account of our experiments and developing
understanding.

Before we could begin to use QuickSpec, we needed a QuickCheck generator
for fixed point data. After a little experimentation, we settled on a generator
using one of the API functions to ensure a valid result, choosing one which
seemed able to generate an arbitrary result:

fp() -> ?LET({N,D},{largeint(),nat()},from_minor_int(N,D)).

We suspected that D is the number of decimal places in the result—a suspicion
that proved to be correct.

Addition and Subtraction We began by testing the add operation, deriving
commutativity and associativity laws as expected. We then added zero() to our
signature and derived a unit law, add(A,zero()) == A.

The next step was to add subtraction to the signature. However, this led to
several very similar laws being generated—for example,

add(B,add(A,C)) == add(A,add(B,C))

add(B,sub(A,C)) == add(A,sub(B,C))

sub(A,sub(B,C)) == add(A,sub(C,B))

sub(sub(A,B),C) == sub(A,add(B,C))

To relieve the problem, we added a simpler operator to the signature instead:

negate(A) -> sub(zero(),A).

and observed that the earlier family of similar laws was no longer generated,
replaced by a single one, add(A,negate(B)) == sub(A,B).

This equation was generated by QuickSpec, and we then tested it exten-
sively using QuickCheck. Once confident that it holds, then we can safely replace
sub in our signature by add and negate, without losing any other equations.
Once we did this, we obtained a more useful set of new equations:

add(negate(A),add(A,A)) == A

add(negate(A),negate(B)) == negate(add(A,B))

negate(negate(A)) == A

negate(zero()) == zero()

These are all very plausible—what is striking is the absence of the following
equation:

add(A,negate(A)) =?= zero()

When an expected equation like this is missing, it is easy to formulate it as a
QuickCheck property and find a counterexample, in this case {fp,1,0,0}. We
discovered by experiment that negate({fp,1,0,0}) is actually the same value!
This strongly suggests that this is an alternative representation of zero (zero()
evaluates to {fp,0,0,0} instead).

0 6= 0 It is reasonable that a fixed point arithmetic library should have different
representations for zero of different precisions, but we had not anticipated this.
Moreover, since we want to derive equations involving zero, the question arises
of which zero we would like our equations to contain! Taking our cue from the
missing equation, we introduced a new operator zero_like(A) -> sub(A,A)
and then derived not only add(A,negate(A)) == zero_like(A) but a variety of
other interesting laws. These two equations suggest that the result of zero_like
depends only on the number of decimals in its argument,

zero_like(from_int(I)) == zero()

zero_like(from_minor_int(J,M)) == zero_like(from_minor_int(I,M))

this equation suggests that the result has the same number of decimals as the
argument,

zero_like(zero_like(A)) == zero_like(A)

while these two suggest that the number of decimals is preserved by arithmetic.

zero_like(add(A,A)) == zero_like(A)

zero_like(negate(A)) == zero_like(A)

It is not in general true that add(A,zero_like(B)) =?= A which is not so
surprising—the precision of B affects the precision of the result. QuickSpec
does find the more restricted property, add(A,zero_like(A)) == A.

Multiplication and Division When we added multiplication and division
operators to the signature, then we followed a similar path, and were led to
introduce recip and one_like functions, for similar reasons to negate and
zero_like above. One interesting equation we discovered was this one:

divide(one_like(A),recip(A)) == recip(recip(A))

The equation is clearly true, but why is the right hand side recip(recip(A)),
instead of just A? The reason is that the left hand side raises an exception if A is
zero, and so the right hand side must do so also—which recip(recip(A)) does.

We obtain many equations that express things about the precision of results,
such as

mult(B,zero_like(A)) == zero_like(mult(A,B))

mult(from_minor_int(I,N),from_minor_int(J,M)) ==

mult(from_minor_int(I,M),from_minor_int(J,N))

where the former expresses the fact that the precision of the zero produced
depends both on A and B, and the latter expresses

i× 10−m × j × 10−n = i× 10−n × j × 10−m

That is, it is in a sense the commutativity of multiplication in disguise.
One equation we expected, but did not see, was the distributivity of multi-

plication over addition. Alerted by its absence, we formulated a corresponding
QuickCheck property,

prop_mult_distributes_over_add() ->

?FORALL({A,B,C},{fp(),fp(),fp(),

mult(A,add(B,C)) == add(mult(A,B),mult(A,C))).

and used it to find a counterexample:

{{fp,1,0,4},{fp,1,0,2},{fp,1,1,4}}

We used the library’s format function to convert these to strings, and found
thus that A = 0.4, B = 0.2, C = 1.4. Working through the example, we found
that multiplying A and B returns a representation of 0.1, and so we were alerted
to the fact that mult rounds its result to the precision of its arguments.

Understanding Precision At this point, we decided that we needed to un-
derstand how the precision of results was determined, so we defined a func-
tion precision to extract the first component of an {fp,...} structure,
where we suspected the precision was stored. We introduced a max function
on naturals, guessing that it might be relevant, and (after observing the term
precision(zero()) in generated equations) the constant natural zero. Quick-
Spec then generated equations that tell us rather precisely how the precision is
determined, including the following:

max(precision(A),precision(B)) == precision(add(A,B))

precision(divide(zero(),A)) == precision(one_like(A))

precision(from_int(I)) == 0

precision(from_minor_int(I,M)) == M

precision(mult(A,B)) == precision(add(A,B))

precision(recip(A)) == precision(one_like(A))

The first equation tells us the addition uses the precision of whichever argument
has the most precision, and the fifth equation tells us that multiplication does
the same. The second and third equations confirm that we have understood the
representation of precision correctly. The second and sixth equations reveal that
our definition of one_like(A) raises an exception when A is zero—this is why
we do not see precision(one_like(A)) =?= precision(A).

The second equation is more specific than we might expect, and in fact it is
true that

precision(divide(A,B)) == max(precision(A),precision(one_like(B)))

but the right hand side exceeds our depth limit, so QuickSpec cannot discover
it.

It is worth noting that QuickSpec initially generated a set of equations
including precision(divide(A,B)) == precision(add(A,B)) for this signa-
ture. This is patently untrue, since the left hand side can raise an exception,
and the right hand side cannot. When false equations appear, it indicates that
the test data we are using is not sufficiently good to falsify them. Seeing this
equation revealed to us that zero was not generated often enough by our test
data generator, and we eliminated it by tweaking the generator to increase the
probability of doing so.

Adjusting Precision The library contained an operation whose meaning we
could not really guess from their names, adjust. Adding adjust to the signature
generated a set of equations including the following:

adjust(A,precision(A)) == A

precision(adjust(A,M)) == M

zero_like(adjust(A,M)) == adjust(zero(),M)

adjust(zero_like(A),M) == adjust(zero(),M)

These equations make it fairly clear that adjust sets the precision of its argu-
ment. We also generated an equation relating double to single adjustment:

adjust(adjust(A,M),0) == adjust(A,0)

We generalised this to N =< M ==> adjust(adjust(A,M),N) == adjust(A,N)
which QuickSpec might well have generated if it could produce conditional
equations. We tested the generalised equation with QuickCheck, and discovered
it to be false. The counterexample QuickCheck found shows that the problem
is caused by rounding: adjusting 0.1045 to three decimal places yields 0.105,
and adjusting this to two decimals produces 0.11. Adjusting the original number
to two decimals in one step produces 0.10, however, which is different. In fact,
the original equation that QuickSpec found above is also false—but several
hundred tests are usually required to find a counterexample. This shows the
importance of testing the most interesting equations that QuickSpec finds more
extensively—occasionally, it does report falsehoods.

Summing up Overall, we found QuickSpec to be a very useful aid in devel-
oping an understanding of the fixed point library. Of course, we could simply
have formulated the expected equations as QuickCheck properties, and tested
them without the aid of QuickSpec. However, this would have taken very much
longer, and because the work is fairly tedious, there is a risk that we might have
forgotten to include some important properties. QuickSpec automates the te-
dious part, and allowed us to spot missing equations quickly.

Of course, QuickSpec also generates unexpected equations, and these would
be much harder to find using QuickCheck. In particular, when investigating
functions such as adjust, where we initially had little idea of what they were

intended to do, then it would have been very difficult to formulate candidate
QuickCheck properties in advance.

Notwithstanding the title of our paper, the specification we derived was not
entirely “free”. We needed to use our ingenuity to extend the signature with
useful auxiliaries, such as negate, precision, + and max, to get the best out
of QuickSpec. Moreover, as the size of the signature grew, then QuickSpec
needed to construct several thousand terms, and run hundreds of thousands of
tests—which began to take minutes, rather than seconds. To keep the running
time within reason, we needed to select subsets of the full signature to investigate.

We occasionally encountered false equations resulting from the unsoundness
of the method. In some cases these showed us that we needed to improve the
distribution of our test data, in others (such as the difference between rounding
in two stages and one stage) then the counterexamples are simply hard to find.
QuickSpec runs relatively few tests of each equation (a few hundred), and so,
once the most interesting equations have been selected, then it is valuable to
QuickCheck them many more times.

5 Discussion

Pruning The “right” set of equations that has just the right amount of equations
in it cannot really be formally defined. In discussions among the authors of the
paper this became very clear; whether or not an equation is considered redundant
as part of a larger set seems to be more a matter of taste than science.

Nevertheless, we decided to formally define what we mean by a redundant
equation using our pruning principle. The design space of such pruning principles
is rather large, and the choices are non-obvious. There are two main points
in choosing a pruning principle: (1) It’s not decidable in general whether an
equation can be safely removed, so we have to use an approximation. There
is therefore no single best pruning algorithm; we have to compromise between
efficiency and power. Our pruning algorithm is powerful yet quite efficient. We
restrict the set of terms that can appear in a proof, but we are able to find any
proof that respects this restriction. (2) A strictly minimal set of laws can be
hard to understand; we would prefer a bigger set of laws if it yields more insight.
This means keeping certain redundant laws, but exactly which seems to be a
matter of taste. We choose to prune away only laws that can be proved from
simpler laws, which seems to keep a reasonable number of equations. However,
our definition of “simpler” is ad-hoc; a more thoughtful definition would surely
improve QuickSpec.

Summarizing, we realize that any choice of pruning principle is going to be
arbitrary, but we want to argue that there is no non-arbitrary choice. We believe
we have found an interesting point in the design space, which seems to be cheap
and practical, although it’s surely still possible to improve the pruning principle.

Equality The Erlang version of QuickSpec uses structural equality in the gen-
erated equations, which means that terms that may evaluate to different repre-
sentations of the same abstract value are considered to be different, for example

causing some of the unexpected results in section 4. The Haskell version uses
the (==) operator, defined in the appropriate Eq instance. However, this is un-
safe unless (==) is a congruence relation with respect to the operations in the
API under test! QuickSpec can be extended to test for these properties while
classifying terms, although space issues do not allow us to go into this here.

6 Related Work

The existing work that is most similar to ours is [4]. They describe a tool for
discovering algebraic specifications from Java classes, and use a similar overall
approach: they generate terms and evaluate them, dynamically identify terms
which are equal, then generate equations and filter away redundant ones.

The most important difference in the two approaches is the fact that they
initially generate only ground terms when searching for equations, then later
generalise the ground equations by introducing variables, and test the equations
using the ground terms as test data. To get good test data, then, they need to
generate a large set of terms to work with, which heavily effects the efficiency of
the subsequent generalization and pruning phases. In our system, the number of
terms does not affect the quality of the test data. So we get away with generating
fewer terms—the cost of generating varying test data is only paid during test-
ing, i.e. during the generation of the equivalence relation, and not in the term
generation or pruning phase. Furthermore, we don’t need a generalisation phase
because our terms contain variables from the start.

There are other differences as well. They test terms for operational equiv-
alence, which is quite expensive; we use fast structural equivalence or a user-
specified equality test. They use a heuristic term-rewriting method for pruning
equations which will not handle structural properties well (we note that their
case studies do not include commutative and associative operators, which we
initially found to be extremely problematic); we use a predictable congruence
closure algorithm. We are able to generate equations relating higher-order func-
tions; working in Java, this was presumably not possible. They observe—as we
do—that conditional equations would be useful, but neither tool generates them.
They generate equations of several particular, fairly general, forms; working with
equivalence classes, we have no restriction on the shape of equations, only on
term size.

Our approach is simpler than theirs but seems to be more effective: our tool
improves the range of equations and the pruning of equations, and appears to
be faster (our examples take seconds to run, while comparable examples in their
setting take hours). However, their task is more difficult in that they have to
do all this in an imperative setting. It is unfortunately rather difficult to make
a fair comparison between the efficacy and performance of the two approaches,
because their tool and examples are not available for download.

Daikon is a tool for inferring likely invariants in C, C++, Java or Perl pro-
grams [3]. Daikon observes program variables at selected program points during
testing, and applies machine learning techniques to discover relationships be-

tween them. For example, Daikon can discover linear relationships between in-
teger variables, such as array indices. Agitar’s commercial tool based on Daikon
generates test cases for the code under analysis automatically [1].

However, Daikon will not discover, for example, that
reverse(reverse(Xs)) == Xs, unless such a double application of reverse
appears in the program under analysis. Whereas Daikon discovers invariants
that hold at existing program points, QuickSpec discovers equations between
arbitrary terms constructed using an API. This is analogous to the difference
between assertions placed in program code, and the kind of properties which
QuickCheck tests, that also invoke the API under test in interesting ways.
While Daikon’s approach is ideal for imperative code, especially code which
loops over arrays, QuickSpec is perhaps more appropriate for analysing pure
functions.

Inductive logic programming (ILP) [7] aims to infer logic programs from
examples—specific instances—of their behaviour. The user provides both a col-
lection of true statements and a collection of false statements, and the ILP tool
finds a program consistent with those statements. Our approach only uses false
statements as input (inequality is established by testing), and is optimized for
deriving equalities.

In the area of Automated Theorem Discovery (ATD), the aim is to emulate
the human theorem discovery process. The idea can be applied to many different
fields, such as mathematics, physics, but also formal verification. An example
of an ATD system for mathematicians is MathSaid [6]. The system starts by
generating a finite set of hypotheses, according to some syntactical rules that
capture typical mathematical thinking, for example: if we know A ⇒ B, we
should also check if B ⇒ A, and if not, under what conditions this holds. Second,
theorem proving techniques are used to select theorems and patch non-theorems.
Finally, since this leads to many theorems, a filtering phase decides if theorems
are interesting or not, according to a number of different predefined “tests”. One
such test is the simplicity test, which compares theorems for simplicity based on
their proofs, and only keeps the simplest theorems. The aim of their filtering and
the implementation are quite different from ours (they want to filter out theorems
that mathematicians would have considered trivial), but the motivation is the
same; there are too many theorems to consider.

7 Conclusions and Future Work

We have presented a new tool, QuickSpec, which can automatically generate
algebraic specifications for Haskell and Erlang programs. Although simple, it
is remarkably powerful. It can be used to aid program understanding, or to
generate a QuickCheck test suite to detect changes in specification as the code
under test evolves. Moreover, it is great fun to use!

We are hopeful that it will enable more users to overcome the barrier that
formulating properties can present, and discover the benefits of QuickCheck-style
specification and testing.

For future work, we plan to generate conditional equations. The difficulty
here is to find an efficient way to select appropriate preconditions during term
classification. We expect to need to restrict preconditions to be small terms; they
must also be true sufficiently often to engender confidence that the equation they
guard is really true. Another class of equations we are looking at are algebraic
imperative specifications. One possible way of dealing with these is to model
them using monads or continuations. The problem is that monadic combinators
are polymorphic; so far, we can only deal with monomorphic signatures.

A minor extension is to be able to ask QuickSpec why an equation isn’t
printed. QuickSpec should respond with either a proof of the equation or a
counterexample, either of which can be easily extracted from QuickSpec’s data
structures.

Acknowledgments The title and introduction of this paper were directly inspired
by Phil Wadler’s paper “Theorems For Free!” [10].

References

1. Boshernitsan, M., Doong, R., Savoia, A.: From daikon to agitator: lessons and
challenges in building a commercial tool for developer testing. In: ISSTA ’06: Pro-
ceedings of the 2006 international symposium on Software testing and analysis. pp.
169–180. ACM, New York, NY, USA (2006)

2. Carlsson, R., Gudmundsson, D.: The new array module. In: Däcker, B. (ed.)
13th International Erlang/OTP User Conference. Stockholm (2007), available from
http://www.erlang.se/euc/07/

3. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1-3), 35–45 (2007)

4. Henkel, J., Reichenbach, C., Diwan, A.: Discovering documentation for java con-
tainer classes. IEEE Trans. Software Eng. 33(8), 526–543 (2007)

5. Hoare, C.A.R.: Proof of correctness of data representations. Acta Inf. 1, 271–281
(1972)

6. McCasland, R.L., Bundy, A.: Mathsaid: a mathematical theorem discovery tool.
In: Proceedings of the Eighth International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC’06) (2006)

7. Muggleton, S., de Raedt, L.: Inductive logic programming: Theory and methods.
Journal of Logic Programming 19, 629–679 (1994)

8. Nieuwenhuis, R., Oliveras, A.: Proof-producing congruence closure. In: RTA ’05:
Proceedings of the 16th International Conference on Rewriting Techniques and
Applications. pp. 453–468. Springer LNCS, Nara, Japan (2005)

9. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press
(1998)

10. Wadler, P.: Theorems for free! In: FPCA ’89: Proceedings of the fourth interna-
tional conference on Functional programming languages and computer architec-
ture. pp. 347–359. ACM, New York, NY, USA (1989)

