A Short Course on McErlang — model checking for Erlang

LarsAke Fredlund, Clara Benac Earle
Computer Science Department, Universidad lBohica de Madrid

(G) Facultad de nformatica Test

property based testing

McErlang basics

m McErlang is useful for checkingoncurrent software
not for checking sequential software

m The normal Erlang runtime system for process handling and
communicating has been replaced with a new runtime system
written in Erlang

m erlang:send ,erlang:spawn , erlang:monitor
have been reimplemented

@) Facultad de Informatica Test

dddddddddddddddddddddddddddddd)
property based testing

ddddddddddddddddddddddddddd

McErlang Practise: A Really Small Example

Two processes are spawned, the first starts an “echo” séafer t
echoes received messages, and the second invokes the earo se

- nrodul e(example).
-export ([start/O]).

start() ->
spawn(fun() -> register(echo, self(), echo() end),
spawn(fun() ->
echo! {msg, sel f (),’nello _world” },

recei ve
{echo,Msg } -> Msg
end
end).
echo() ->
recei ve

{ msg,ClienttMsg } ->
Client !{echo,Msg }, echo()
end.

Test

property based testing

Example under normal Erlang

Let’s run the example under the standard Erlang runtimesgyst

> erlc example.erl
> erl
Erlang (BEAM) emulator version 5.6.5 [source | [smp:2]

Eshell V5.6.5 (abort with "G)
1> example:start().

<0.34.0>

2>

That worked fine. Let’s try it under McErlang instead.

@) Facultad de Informatica Test

ddddddddddddddddddddddddddd

property based testing

Example under McErlang

First have to recompile the module using the McErlang coanpil

> mcerl_compiler -sources example.erl -output_dir .

(G) Facultad de nformatica Test

property based testing

Example under McErlang

First have to recompile the module using the McErlang coanpil

> mcerl_compiler -sources example.erl -output_dir .

Then we run it;

> mcerl
Erlang (BEAM) emulator version 5.6.5 [source | [smp:2]

Eshell V5.6.5 (abort with "G)
1> mce: appl y(example,start, []).
Starting McErlang model checker environment version 1.0

Process ... exited because of error. badarg
Stack trace:

mcerlang:resolvePid/2
mcerlang:send/2

@) Facultad de Informatica Test

dddddddddddddddddddddddddddddd)
property based testing

Investigating the Error

An error! Let’s find out more using the McErlang debugger:

2> mce_erl_debugger:start(get (result)).

Starting debugger with a stack t race; execution terminatec
user program raised an uncaught exception.

stack(@2)> where().
2.

1. process <node0,3>:
run #Fun<example.2.125>([1)
process <node0,3> died due to reason badarg

0: process <node0,1>:

run function example:start([1)

spawn({ #Fun<example.1.278>, []},[]) - -> <nodeO0,2>
spawn({ #Fun<example.2.125>, []},[]) - -> <node0,3>
process <node0,1> was terminated

process <node0,1> died due to reason normal

(G) Facultad de nformatica Test

property based testing

Error Cause

m Apparently in one program run the second process spawned
(the one calling the echo server) was run before the echeiserv
itself.

m Then upon trying to send a message

echo! {msqg, sel f(),’hello _world’ '}

theecho name was obviously not registered, so the program
crashed.

(G) Facultad de nformatica Test

property based testing

Presentation Outline

ddddddddddddddddddddddddddd

What is model checking & a brief comparison with testing
McErlang: installing and usage

Hands-on with McErlang:

A prepared example (a lift control system)
or work with your own examples

Test

property based testing

What is Model Checking

s Runthe program in a controlled manner so that all program
states are visited (visualized as a finite state transitraply:

m A node representsarogram state which records the state of
all Erlang processes, all nodes, messages in transit. . .

m Graph edgesrepresent computation steps from one program
state to another

m Correctness Propertiesare automata that run in lock-step with
the program; they inspect each program state to determine
whether the state is ok or not

@) Facultad de Informatica Test

ddddddddddddddddddddddddddd

property based testing

ing

th Random Test

ISON Wi

Compar

The State Space of a small program

A0iy joig‘auopiy
asea|s. 8se3|81i1900
95B991{19%90

{[e]'bai}iiaxo0| {[e]'bai}isaxo0

Ly

ojp'auopig
Psea|ali1ax20| 0it
RCIT R EIENTENET)
A0ig @ A0ig
{[e]'bai}itano0|
Aoig auopig
{[e]'bai}itaxo0| 6 {[e]'bai}itaxo0]| {[e]'bai}isano0| A0t

e {[e]'bai}itaxo0|

ERCEIEIIENRL] 124

{[e]'bai}jsaxo0|

{[e]'bai}jiaxo0]|

x
ee

{[e]'bai}isaxoo\ {[e]'bai}itaxo0|

{pavreiso}j

{parrers*y0}ig

o~
®

{[e]'bai}itaxo0|

0iS

H0ig!

gsea|alj1axoo)

A0ivy

{[e]'bai}i1an00|

{[e]'bai}isaxo0|

{[e]'bai}iteno0| {[e]'bai}itaxo0|

{[e]'bai}itano0|

ERCEIEITENEL]

A0ip

Test

property based testing

ica

Universidad Politécnica de Madrid

Facultad de Informat

©)

Testing, run 1

Random testing explores one path through the program

A0iy

ases|o.

{[e]'bai}iiaxo0|

Ly

ojp'auopig

lpseajauisaxool

A0iy

A0ig

{[e]'bai}itano0|

A0ig duopig
{[e]'bai}itaxo0|

{[e]'bai}itaxo0]|

{[e]'bai}itaxo0|

ERCEIENFENEL)

{[e]'bai}jsaxo0|

3oig

{[e]'bai}itaxo0]|

2sea|aljlanoo

{[e]'bai}isano0|

{[e]'bai}itaxo0]|

CEEIETIEREL:]

{[e]'bai}isaxo0

J0iy

A0ig

A0it)

144

{[e]'bai}jiaxo0]|

{[e]‘bai}itaxo0]

{pauieis'yo}iy

{panreisyo}ig

0iS

H0ig!

gsea|alj1axoo)

A0ivy

{[e]'bai}i1an00|

{[e]'bai}isaxo0|

{[e]'bai}iteno0| {[e]'bai}itaxo0|

{[e]'bai}itano0|

ERCEIEITENEL]

A0ip

Test

property based testing

ica

Universidad Politécnica de Madrid

Facultad de Informat

©

Testing, run 2

With repeated tests the coverage improves

auopid {[e]'bai}iiaxo0|

{[e]'bai}itaxo0)

A0iy
ases|s. 8se3|81i1900
(o
95B991{19%90
{[e]'bai}iiaxo0| {[e]'bai}isaxo0
ojy‘auopis
Psea|ali1ax20| 0it
RCIT R EIENTENET)
| %0ig A0ig
{[e]'bai}itano0|
%oig auopis

{[e]'bai}itaxo0|

{[e]'bai}itaxo0| {[e]'bai}itaxo0]| {[e]'bai}isano0| N0it
e {[e]'bai}itaxo0|
ERCEIENEN B 144
{[e]'bai}jsaxo0|
N0ij {[e]'bai}i1axo0|

{[e]'bai}isaxoo\ {[e]'bai}itaxo0|

{pavreiso}j

{parrers*y0}ig

0iS

H0ig!

gsea|alj1axoo)

A0ivy

{[e]'bai}i1an00|

{[e]'bai}isaxo0|

{[e]'bai}iteno0| {[e]'bai}itaxo0|

{[e]'bai}itano0|

ERCEIEITENEL]

A0ip

Test

property based testing

ica

Universidad Politécnica de Madrid

Facultad de Informat

©)

Testing, run n

A0if]

A0iy

ERCEIEIFENRL]

{[e]'bai}j1ax20]

{[e]'bai}itaxo0|

ISited

But even after a lot of testing some program states may n& hav

been v

14 {[e]'bas}itaoo)

auopiq {[e]'bai}isaxo0|

{[e]'bai}itaxo0|

Oip'auopig

)

25©9[81i19%90]

A0iG

{[e]'bai}isaxo0|

suopis

{[e]'bai}i1ax20]|

asB9]2119320||

A0ig|

{[e]'bai}jsax20]|

CECEIEYENEL

{[e]'bai}iiax20|

{[e]'bai}itaxo0|

Aoig'auopiy

CREIEIFENRL]

08 <]

{[e]'bai}iiaxo0|

A0iy

™~

1T

95B9]21{19390]

/

6€

A0ig

{[e]'bai}itaxo0| A0iH]

{[e]'bai}isoxo0|

0T

{[e]'bai}i1axo0|

{pauieis‘yo}i

{panie1s*y0}ig

A0ig,

A0ig

S©9|91i19320|

v -

A0iy

@ &3

€
zm_.cw::wxu”/ {[e]'bai}itaxo
€

=

auopiy({[e]'bai}iiaxo0]

E__Eg

9€

{[e]'bai}iiaxo0| auopity A0iv
LE

95©9]21i18%20]

9T

d0iy

©

{[e]*bai}i1axo0]|

Test

property based testing

ica

Universidad Politécnica de Madrid

Facultad de Informat

©

: 100% coverage

Model checking

Model checking can guarantee that all states are visitadpwi

revisiting states

{[e]'bai}itaxo0|

{[e]'bai}izaxo0)

{[e]‘bai}itexo0]|

A0if joig‘auopiy,
ERCEIENIEREIY Bsea|a1i19390)|
95B9[91{19%90
{[e]'bai}i1ax00| {[e]'bai}i1exo0|
ojy'auopig
EEEIENIENEDI) A0it
NOiy| asea|aljiand0| asea|aljlaxyoo|
)0ig A0ig
{[e]'bai}jsaxo0]
{[e]'bai}itax00|
30ig| auopig
{[e]'bai}jien00] {[e]'bai}itano0] {[e]'bai}itaxo0| N0it]
{[e]'bai}itano0|
asea|aliiando
{[e]'bai}jsax00|
3oigq {[e]'bai}isaxo0

{[e]'bai}itaxo0]|

{[e]'bai}jsaxo0|

{pauieisyo}it|

{payeisyo}i

20ig

ESEEIENTENRL)

{[e]'bai}jsaxo0|

auopiy| {[e]'bai}jiaxo0|

{[e]'bai}itaxo0|

A0iy

20iG!

Aoiy

{[e]'bai}isaxo0|

{[e]'bai}itaxo0|

asea|alilayoo|

{[e]'bai}isaxo0

Test

property based testing

ica

Universidad Politécnica de Madrid

Facultad de Informat

©

What is the trick? How can we achieve 100% coverage

s Needed: the capability to takesaapshotof the Erlang system

[0 A program stateis: the contents of all process mailboxes,
the state of all running processes, messages in transit (the
ether), all nodes, monitors, ...

process P process P2

Node A

(G) Facultad de nformatica Test

property based testing

What is the trick? How can we achieve 100% coverage

s Needed: the capability to takesaapshotof the Erlang system

[0 A program stateis: the contents of all process mailboxes,
the state of all running processes, messages in transit (the
ether), all nodes, monitors, ...

Node B

m Save the snapshot to memory and forget about it for a while

m Later continue the execution from the snapshot

(G) Facultad de nformatica Test

property based testing

What is the trick? How can we achieve 100% coverage

ddddddddddddddddddddddddddd

Needed: the capability to takesaapshotof the Erlang system

[0 A program stateis: the contents of all process mailboxes,
the state of all running processes, messages in transit (the
ether), all nodes, monitors, ...

Node C

Node

process P process P2

Node A

B

Save the snapshot to memory and forget about it for a while
Later continue the execution from the snapshot

Difficulties:

[0 too many states (not enough memory to save snapshots)
[0 we have to save state outside of Erlang (disk writes,...)

Test

property based testing

The McErlang model checker: Design Goals

m Reduce the gap between program and verifiable model
(the programs the model)

m Write correctness properties in Erlang

m Implement verification methods that permit partial chegkin
when state spaces are too big — Holzmann'’s bitspace algmith

m Implement the model checker in a parametric fashion (easy to
plug-in new algorithms, new abstractions, ...)

@) Facultad de Informatica Test

ddddddddddddddddddddddddddd)
property based testing

The McErlang approach to model checking

m The lazy solution: just execute the Erlang program to vanfy
the normal Erlang interpreter

m And extract the system state (processes, gueues, function
contexts) from the Erlang runtime system

@) Facultad de Informatica Test

ddddddddddddddddddddddddddd)
property based testing

The McErlang approach to model checking

m The lazy solution: just execute the Erlang program to vanfy
the normal Erlang interpreter

s And extract the system state (processes, gueues, function
contexts) from the Erlang runtime system

s Too messy! We have developeaew runtime systemfor the
process part, and still use the old runtime system to execute
code with no side effects

Erlang Runtime System McErlang Runtime System
Process coodination and communication McErlang Process coodination and communication |
Data computation Data computation
* A X
(Q) Facultad de Informatica TESt
b’ Universidad Politécnica de Madrid

property based testing

Adapting code for the new runtime environment

Erlang code must be “compiled” by the McErlang “compiler’ttm
under the new runtime system:

ddddddddddddddddddddddddddd

APl changes: calincerlang: spawn instead of
erlang: spawn

Instead of executing (which would block)

recei ve
{ request, Clientld }o->
end

a compiled function returns a special Erlang value degsagibi
the receive request with a new anonymous function
Implementing the clauses of thecei ve:

{’ recv_’, { Fun, VarList }}

McErlang translator works on the HIPE Core Erlang code

Test

property based testing

McErlang Workflow

Normal Erlang Workflow:

Program
(a collection of modules)

Erlang compiler

Y

Compiled modules
(beam or native)

Program execution
'
Erlang Concurrency &
Distribution Support

~

Erlang Data Handling &
Sequential Execution

Erlang Runtime System

Universidad Politécnica de Madrid

(G) Facultad de Informatica

McErlang Workflow:

Program
(a collection of modules)

Y

Modified Program
(collection of modules)

Y
Compiled modules
(beam or native)

Program execution

'

McErlang source-to-
source translation

Erlang compiler

McErlang Concurrency &
Distribution Support

Erlang Data Handling &
Sequential Execution

~

McErlang Runtime System

Test

property based testing

Full Erlang Supported?

m Processes, nodes, links, full datatypes supported in Mogrl
m Higher-order functions

m Many libraries at least partly supported: supervisor, gerver,
genfsm, genevent, ets, ...

m No real-time or discrete-timeodel checkingimplementation
yet

recei ve
after 20 -> ..
end

behaves the same as

recei ve
after 20000 -> ...
end

@) Facultad de Informatica Test

ddddddddddddddddddddddddddd

property based testing

Extensions to Erlang in McErlang

m Nondeterminacy:

mce_erl.choice
([fun () -> Pid!hi end,
fun () -> Pid!hola end]).

sends eithehi orhola to Pid but not both

m Convenience:

mcerlang: spawn
(new_node, fun () -> Pid! hello_world end)

The nodenew _node Is created if it doesn’t already exist

(G) Facultad de nformatica Test

property based testing

McErlang in Practise: downloading

m Readhttps://babel.ls.fi.upm.es/trac/McErlang/

m Use subversion to check out the McErlang sources:

svn checkout \
https://babel.ls.fi.upm.es/repos/McErlang/trunk \

McErlang

m Get bugfixes and improvements using subversion:

svn update

@) Facultad de Informatica Test

ddddddddddddddddddddddddddd)
property based testing

Installing

m We use Ubuntu — Fedora, probably works too
McErlang doesn’t work well under Windows

m Compile McErlang:

cd McErlang; make

m Putscripts directory on the command path (in Bash):
export PATH="/McErlang/scripts:$PATH

m Read the manuals:

acroread doc/tutorial/tutorial.pdf
acroread doc/userManual/userManual.pdf

Test

property based testing

ddddddddddddddddddddddddddd

McErlang Directory Organisation

m scripts —mcerl_compile andmcerl
m configuration/funinfo.txt — controls translation
m doc —usermanual and tutorial

m examples

m lib/erlang/src — re-implementation of some OTP
behaviours
m algorithms — execution mode (simulation/model checking)

m monitors — standard correctness properties
m scheduler - Erlang scheduler
m stacks ,tables |, abstractions (tool parameters)

(G) Facultad de nformatica Test

property based testing

Compiling/preparing code for running under McErlang

m All source code modules of a project must be provided to the
McErlang compiler

s SomeOTP behaviours/libraries are automatically included at

compile time
m Example:

mcerl_compile -sources *.erl -output_dir ebin
m The translation is controlled by tHeninfo.txt file

(an application specific configuration file can be given)

m The result of the translation is a setlafam files
(and Core Erlang code for the translated modules)

@) Facultad de Informatica Test

ddddddddddddddddddddddddddd)
property based testing

Controlling Translation

ddddddddddddddddddddddddddd

The filefuninfo.txt controls the remapping of functions and
describes side effects:
[
{ gen_server, [{translated to,mce_erl gen_server 11}
{ supervisor, [{translated to,mce_erl _supervisor 11}
{gen_fsm, [{translated to,mce erl gen fsm 1},
{erlang, [{rcv,(false }]},
{{erlang, spawn,4},
[rev,
{ translated _to, { mcerlang, spawn}}]},
{{erlang,send,2 }, [{translated to, { mcerlang,send }}

]...

A verification project can use its ownninfo.txt

Test

property based testing

Choice of Libraries

m McErlang has tailored versions of some librariespervisor
gen_server ,gen_fsm,gen _event ,lists ,ets,...which
are automatically included

m [t may be possible to use the standard OTP libraries instead

@) Facultad de Informatica Test

dddddddddddddddddddddddddddddd)
property based testing

Running programs under McErlang

m Starting McErlang:

mce:start
(#mce_opts { program= { Module,Fun,Args },
algorithm= { Module,InitArgs },
monitor= { Module,InitArgs)

m Example: starting thEcho program

mce:start
(#mce_opts { program= { example,start, [1},
algorithm= { mce alg_safety,void },
monitor= { mce_mon_testvoid })

m The result of a model checking run is a “result value” which ca
be inspected using the functions in tinee_result module.
The result value is normally stored in the process dictipnar
under the keyesult

(G) Facultad de nformatica Test

property based testing

McErlang runtime options

More #mce_opts {} record options:

ddddddddddddddddddddddddddd

sim_external_world = true() | false()
McErlang does I/O with external world? (false)

shortest = true() | false()
Compute the shortest path to failure? (false)

fail_on_exit = true() | false()
Stop a model checking run if a process terminates abnormally
due to an uncaught exception (true)

terminate = true() | false()
Let the runtime system randomly terminate processes [false

Is_infinitely fast = true() | false()

Prohibits (non-zero) timeouts (causeddfyt er clauses in

r ecei ve statements) from occurring if non-timeout transitions
are enabled. This corresponds to the assumption that thensys
IS infinitely fast (false) Test

property based testing

Algorithms

An algorithm determines the particular state space exiora
strategy used by McErlang:

m mce_alg simulation
Implements a basic simulation algorithm
(following a single execution path)

m mce_alg safety
Checks the specified monitor, whiatustbe of typesafety |,
onall program states of the program
(either suceeds or returnaunterexamplean execution path
leading to a state failing the monitor)

m mce_alg combine
This algorithm provides a method to combine two other
algorithms (e.g., simulation and model checking)

(G) Facultad de nformatica Test

property based testing

What to check: Correctness Properties

Ok, we can run programs under the McErlang runtime system.
Next we need a language for expressing correctness pregerti

(G) Facultad de nformatica Test

property based testing

What to check: Correctness Properties

Ok, we can run programs under the McErlang runtime system.
Next we need a language for expressing correctness pregerti

ddddddddddddddddddddddddddd

We pick Erlang of course!
A safety monitors an user function with three arguments:

stateChange(State, MonitorState, Actions) - >

{ ok, NewMonitorState }.

A program is checked by running it in lock-step with a monitor

The monitor can inspect the current state, and the sidetgffec
(actions) in the last computation step

The monitor either returns a new monitor state (success), or
signals an error

Test

property based testing

Safety Monitors

m Safety Monitors check thatothing bad ever happens

m They must be checked 'milx the states of the program:

locker!{req,[a]}
ocker!{req,[a]}

locker!{req,[a]}

R!{ok,started}

L1{ok,started)

Tocker!{req, [al}_locker!{req,[a]} b!done

locker!{req.[a]} \locker!{req,[a]}

locker!{req,[a]} \Jocker!{req,[a]}

locker!{req,[a]}

s
=
g
E
S
2

@ Facultad de Informatica Test

Universidad Politécnica de Madrid i
property based testing

A monitor example

- nrodul e(mon_deadlock).

- expor t ([init/1,stateChange/3,monitorType/0 1).

-behaviour(mce_behav_monitor).
monitorType() - > safety.
Init(State) -> {ok,State }.

stateChange(State,MonState,) ->
case is_deadlocked(State) of
true -> deadlock;
false -> {ok, MonState }
end.

IS_deadlocked(State) ->
State#state.ether =:= [] andalso
(not(lists:any
(fun (P) -> P#process.status =/= blocked
mce_erl:allProcesses(State)))).

ddddddddddddddddddddddddddd

end,

Test

property based testing

What can monitors observe®?

m Program actions such as e.g. sending or receiving a message

m Program state such as e.g. contents of process mailboxas, na
of registered processes

m Indirectly the values of some program variables
(but are difficult to access)

m Programs can be instrumented with special “probe actidra” t
are easy to detect in monitors

m Programs can be instrumented too with special “probe States
which are persistent (actions are transient)

@) Facultad de Informatica Test

ddddddddddddddddddddddddddd

property based testing

Some Predefined Monitors

m {mce_mon_deadlock, Any:.any() }
Checks that there is at least one non-deadlocked process

m {mce_mon_queue, MaxQueueSize::int() }
Checks that all gueues contain at miisixQueueSize
elements.
(G) Facultad de informtica Test

property based testing

Checking Liveness Properties (tomorrow)

ddddddddddddddddddddddddddd

For expressing that “something good eventually happens”

In McErlang Linear Temporal Logic is used to express livenes
properties

Test

property based testing

Checking Liveness Properties (tomorrow)

m For expressing that “something good eventually happens”

m In McErlang Linear Temporal Logic is used to express livenes
properties

LTL Operators check properties pfogram runs

m Alwayso
¢ holds in all future states of the run

s Eventuallyo
¢ holds in some future state of the run

| gbl Until qbg
¢1 holds in all states untip, holds (butp, may never hold)

m Standard predicates: negatienp, conjunctionp; V ¢s,. ..

m Predicates on actions or Erlang stategl! {request,A }
(a request message is sent to some process)

(G) Facultad de nformatica Test

property based testing

The McErlang Debugger

m There is a rudimentary debugger for examing model checking
counter examples

m After a failed model checking run, start the debugger on the
counterexample using:

mce_erl_debugger:start(get (result))

m For further details see the user manual

(G) Facultad de nformatica Test

property based testing

Things that can go wrong

m McErlang runs out of memory — too many states/too long
runtime stack

Kerl{req,[al}

s Why? (program uses timers, counters, random values, ...)
() Facultad de informatica Test

property based testing

Things that can go wrong

m McErlang runs out of memory — too many states/too long
runtime stack

= Why? (program uses timers, counters, random values, ...)

m Possiblyfix by using a fixed size state table implementation:

#mce_opts
{...table= { mce_table bitHash,Size }, oo}

Implements a hash table where states are hashed into aarnnteg
value, and there is no collision handling (i.e., differetatass
can be mapped to the same hash value without being detected

m anhdwe can also use a bounded stack

#mce_opts
{...,stack= { mce_stack bounded,Size }, ... }

Test

property based testing

ddddddddddddddddddddddddddd

McErlang in practise: The Elevator Example

s \We study the control software for a set of elevators

Ll evators |- &[]

comd
comd
comd
al2] a2l
5] H

m Used to be part of an Erlang/OTP training course from Erigsso

(G) Facultad de nformatica Test

property based testing

The Elevator Example

Example complexity:

m Uses quite a few librariedists , gen_event , gen_fsm,
supervisor ,timer ,gs, application

m Static complexity: around 1670 lines of code

m Dynamic complexity: around 10 processes (for two elevators

(G) Facultad de nformatica Test

property based testing

Running the elevator under McErlang
m First we just try to run it under the McErlang runtime system
(forgetting about model checking for a while)

m This will test the system under a less deterministic schexdul
than the normal Erlang scheduler

@) Facultad de Informatica Test

ddddddddddddddddddddddddddd)
property based testing

Running the elevator under McErlang
m First we just try to run it under the McErlang runtime system
(forgetting about model checking for a while)

m This will test the system under a less deterministic schexdul
than the normal Erlang scheduler

m Seems to work...

@) Facultad de Informatica Test

ddddddddddddddddddddddddddd)
property based testing

Model checking the elevator under McErlang

Model checking is more complicated:

ddddddddddddddddddddddddddd

Thegs graphics will not make sense when model checking
We shut it off in model checking mode

Test

property based testing

Model checking the elevator under McErlang

Model checking is more complicated:

m Thegs graphics will not make sense when model checkiag
We shut it off in model checking mode

m The example is very geared to smooth graphical display

We modify the program to only have three (3) intermediate
points between elevator floors (normally 20)

@) Facultad de Informatica Test

dddddddddddddddddddddddddddddd)
property based testing

Model checking the elevator under McErlang

Model checking is more complicated:

m Thegs graphics will not make sense when model checkiag
We shut it off in model checking mode

m The example is very geared to smooth graphical display

We modify the program to only have three (3) intermediate
points between elevator floors (normally 20)

m The program contain timers (for moving the elevatsr)

We assume that the programméinitely fastcompared to the
timers: timer only release when no program action is possibl

@) Facultad de Informatica Test

ddddddddddddddddddddddddddd)
property based testing

Model checking the elevator under McErlang

Model checking is more complicated:

m Thegs graphics will not make sense when model checkiag
We shut it off in model checking mode

m The example is very geared to smooth graphical display

We modify the program to only have three (3) intermediate
points between elevator floors (normally 20)

m The program contain timers (for moving the elevatsr)

We assume that the programméinitely fastcompared to the
timers: timer only release when no program action is possibl

m Intotal, about 15 lines of code had to be changed to enable
model checking

(G) Facultad de nformatica Test

property based testing

Course Material

m Download the source code from the McErlang wiki page:
https://babel.ls.fi.upm.es/trac/McErlang/

m Attachmentelevator code.tar.gz

m The fileelevator_example/exercises.txt contains
Instructions

@) Facultad de Informatica Test

dddddddddddddddddddddddddddddd)
property based testing

Correctness Properties

[
rolest
property based testing

Correctness Properties

= No runtime exceptions

(5) Facuitsd denformatic roTes
property based testing

Correctness Properties
= No runtime exceptions

m An elevator only stops at a floor after receiving an order to go
to that floor

(implemented as a monitor that keeps a set of floor requests,
and checks that visited floors are in the set)

@) Facultad de Informatica Test

ddddddddddddddddddddddddddd)
property based testing

A Monitor Implementing the Floor Request Property

%% The nonitor state is a set of floor requests
init() - > ordsets:new().

%% Cal | ed when the program changes state
stateChange(_,FloorRegs,Actions) - >

case interpret_action(Action) of
{f button,Floor } -
ordsets:add_element(Floor,FloorReqs);

{ e button,Elevator,Floor } ->
ordsets:add_element(Floor,FloorReqs);
{ stopped_at,Elevator,Floor } o->
case ordsets:is_element(Floor,FloorReqs) of
true -> FloorRegs;
false -> t hrow { bad_stop,Elevator,Floor })
end;
_ -> FloorReqgs
end
(G) Facultad de nformatica Test

property based testing

More Correctness Properties

m Refining the floor correctness property:

An elevator only stops at a floor after receiving an order to go
to that floor, if no other elevator has met the request

(implemented as a monitor that keeps a set of floor requests;
visited floors are removed from the set)

ddddddddddddddddddddddddddd [est

property based testing

More Correctness Properties

m Refining the floor correctness property:

An elevator only stops at a floor after receiving an order to go
to that floor, if no other elevator has met the request

(implemented as a monitor that keeps a set of floor requests;
visited floors are removed from the set)
m A Liveness property:

If there is a request to go to some floor, eventually some
elevator will stop there

(G) Facultad de nformatica Test

property based testing

Scenarios

m Instead of specifying one big scenario with a really bigestat
space, we specify a number of smaller scenarios

m QuickCheck can be used to generate them

(G) Facultad de nformatica Test

property based testing

McErlang Status and Conclusions

m Supports a large language subset (full support for didiohu
and fault-tolerance and many higher-level components)

m Everything written in Erlang
(programs, correctness properties, ...)

m An alternative implementation of Erlang for testing
(using a much less deterministic scheduler)

m Using McErlang and testing tools like QuickCheck can be
complementary activities:

0 Use QuickCheck to generate a set of test scenarios
0 Run scenarios in McErlang
0 Analyze results in QuickCheck

m https://babel.ls.fi.upm.es/trac/McErlang/

(G) Facultad de nformatica Test

property based testing

