Inviso/Onviso

Aniko Nagyné Vig

Ay,
)
\
]

1‘ a?‘lb
;
\\l\: l

)
C

Erlang Training and Consulting Ltd

rdRsﬁ);

property based testing

Agenda

Goal

Erlang tracing and tools overview
Inviso

Onviso

Exercises

Goal

The aim of the Protest Project is to develop and improve testing
and tracing tools.

In this part of the project we would like to create a simple
interfaced and safe tracing tool enable to use from a remote
node. We chose to extend the existing Inviso application.

Tracing Tools available for Erlang

OTP applications Other Open Source applications

ET ttb

Pan Eper - Redbug

Pman

dbg

Eper - Watchdog

invisio

Erlang trace BIFY

A ProTest’y W¥/L>
Copyright 2009

Erlang trace BIFs

All tracing solutions discussed are based on trace BIFs
Provides data for monitoring execution and memory usage

Events are sent as trace messages of the format
= {trace, Pid, Tag, Data1 [,Data2]}

Events include
= Message passing
= Gc and memory usage
= Process activity

At any one given time, only one process may receive trace
events from another process

, ProTest)
Copyright 2009

Erlang trace BIFs possible settings

Dynamically enabled. Filtering on pids: existing, new, all, pid()

Flags

= ‘send’, 'receive’ for message passing events

= ‘running’ for scheduling events: ‘in’ and ’out’ messages sent when a process is scheduled
or preempted

= ‘exiting’ for scheduling exiting processes. Message tags: ‘in_exiting’, ‘out_exiting’, and
‘out_exited’.

= ‘procs’ for process-related events. Message tags: ‘spawn’, ‘exit’, ‘link’, ‘unlink’, ‘register’,
‘unregister’, ‘getting_linked’, ‘getting_unlinked’

= ‘call’ for function calls. Message tags: call, return_from It can be combined with arity,
return_to and silent flags. In trace_pattern match_specifications can be defined.

= ‘set_on_spawn’, ‘set_on_first_spawn’, ‘set_on_link’, ‘set_on_first_link’ sets the
inheritance of the trace flags in the new processes

= ‘garbage_collection’. Message tags: ‘gc_start’, ‘gc_stop’.

= ‘timestamp’ and ‘cpu_timestamp’ for including timestamps to each trace message.

A ProTest’y W¥/L>
Copyright 2009

Dbg

The most popular debugging tool for Erlang (in Erlang OTP).
Text based debugger, suitable for text based terminals

Provides a friendly and simple interface to the trace and

trace_pattern BIFs providing the same functionality:

= By setting trace flags for processes, ports and functions and
manipulating the trace patterns even on multiple nodes

Suitable on large systems: Small impact on system performance, but
traces can be set only one node at a time, and not remotely.

Not always safe, e.g. dbg:tracer(), dbg:p(all,m) can kill the running
system

ProTest P¥2E=%
Copyright 2009 w'

Advantages of inviso & dbg

Inviso Dbg
* Configurable output, canbe « |jght tool, very useful for
sent to: ad-hoc tracing on newly
- erlang interface found faults with simple
- log file interface
— text output in erlang shell « Helper function (fun2ms)
» Powerful tool for automatic for generating match
tests: specifications

— custom profiling
— property testing
— white-box testing
» Strong support for usage in

e Jistributed systems FprgTE§’[g) w

The inviso Tool

3<The inviso tool is an erlang trace tool

s<Provides an interface to the trace and trace_pattern BIFs
3<Designed with distributed systems in mind

$<Has small impact on system performance

3<Suitable for use on large distributed systems

3<Has more functionality than dbg, but too complex to be
considered a simple debug tool like dbg

Can be used for:

3<Troubleshooting: tracing and debugging
$< automatic white-box testing

3< system profiling

3< property checking

ProTest™ PN ZLEE
Copyright 2009 W_‘_E:’c

The inviso Tool

Runtime component/s
Control component (test node) (target nodel/s)

/ /

Inviso part w
MEELE Brocess monitoring” LlV=on

Log
processes
(temporary) Trace Log Trace Log
Collectors rocess monitoring| Fetcher

Application -
A ProTest’y W¥/L>
Copyright 2009

The inviso Tool - Start-up requirements

An instance of RT is started on each node in the system being
traced.

These can be controlled from one node, which may be part of
the system or a separate, dedicated test node.

Only requirements are:

3< the runtime tools application is started on all traced
nodes

3< test node can communicate with all the system nodes

Copyright 2009

The Inviso Tool - Trace

Trace information can be:

3<Logged to file

s<Passed as parameters to custom functions
3<Displayed as text in the Erlang shell

3<Sent to another Erlang nodes’' runtime
system (good for minimizing the
performance impact on system under test)

= This other node can be a specialised

debugging/testing node
Copyright 2009 gg g g ;Epcglsg;g) w

The inviso Tool - Performance

Good to design tests and traces to run in a separate test node
beside the system, because:

s<Easier to divide test from core functionality of the system

3<Tests can have minimal impact on system operation, both
configuration & performance wise

System protection under test

3<Optional overload protection, vital for live systems. If a
user defined function decides that a node is overloaded
then tracing will be suspended on that node

3<Essential in case overloading is caused by the tracing

Copyright 2009

The inviso Tool

Can be used for debugging if the fault is more subtle or harder
to find and something more powerful than dbg is needed.
Inviso is more suited to designed traces and tests.

The interface is powerful but too complex to be considered a
simple ad-hoc debug tool like dbg, it would be a simple task
to develop a wrapper to make this more usable for
debugging

A ProTest’y W¥/L>
Copyright 2009 property based testing

The Inviso Tool - Step by Step

NG g&ga;»««ef the- traees

¥ 8akh target

R Hfl“lfﬁnctrvn and} }1},
i LdEQBY Semﬁer«bracef’i:té 1eg Ty,

custom_serv—Tunction

des of the.system, where you
Ty mﬁunctronmend*}“} 1}1
: & uxN»- AK''s ETVé‘f@llnux

L1, Lizes

chéltf m

‘@@mmm W@&mux 1,
% %ﬁ&é&;nux

m“:ﬁ@ﬁﬁﬁ' /,I,{‘trace c

{test, rove load _func, [[]11}}1}]). ProTest

Copyright 2009

I’L '/I'IM/

property based testing //

Match Specifications
[{[ping,'$1,'52'],
[1,
[{return_trace}]}]

e A match specification consists of an Erlang Term.

e Describes a “programme” that tries to match.

e Compiled to something more efficient than a function.
e Powerful but complex to write and often unreadable.

e Match specifications can be generated from literal funs '
using dbg:fun2ms function.

A ProTest’y W¥/L>
Copyright 2009

Goal of the Onviso extension

€ Provide an easy to use, remotely usable, safe, online tracing
tool

® Include our extension to the Inviso application within the
OTP release (planned meetings with Kenneth Lundin)

@ Include possible extensions for property checking

Onviso - Extension of the Inviso

Easy to use API as a wrapper for the original Inviso

— Using only 2 function to set up tracing on multiple nodes
and merge them

— Added short-cuts for common match specifications

— Command line interface

A ProTest’y W¥/L>
Copyright 2009 property based testing

Onviso - Extension of the Inviso

Added extra functionality

— Retrieve the status of the recent traces and configurations
allowing to run different merge functions on the same trace
data

— Default choices are provided for merging (the simplest is to
write every trace into a file) and overload protection

— The merge functionality can be used for property testing

Copyright 2009

Setting up a trace -starting the nodes

Start and initialise all nodes in the system: in this example the
server and client nodes

> client:init('server@machine').
> server:start().

Start the Inviso node

Set the same cookie on every node:

> erlang:set_cookie(node(),inviso).

A ProTest’y W¥/L>
Copyright 2009 property based testing

Setting up a trace - define the patterns

Onviso uses the following format to specify a pattern:

{Module, Function, Arguments, MatchSpecification}

Example patterns:

{client, get, '_', return}
{server, loop, '_", [1}

Please note the difference between the original MS
([{'_",[],[{return_trace}]}]) and the return short-cut

ProTest) PSY20=X
Copyright 2009

Setting up a trace

Possible trace calls:
>onviso:trace(Patterns, Flags). %traces only the local node
>onviso:trace(Patterns, Nodes, Flags).
>onviso:trace(Patterns, Nodes, Flags, OverLoadProtection).
To set up the trace on the Inviso node for example:
L,

PN

> onviso:trace([{server, loop,

{client, put,

1

{client, get, '_', return}],
[", 'client@laptop'],

{all,[calll})

A ProTest’y W¥/L>
Copyright 2009

Stop a trace

Every trace call returns a trace reference identifier. This id can
be used to stop or merge a trace.

>onviso:stop(Id).

The traces are collected to files and distributed back to the
Inviso control node.

Copyright 2009

Merge a trace - default examples

> onviso:merge(Id, void, void, shell). %result in the shell

> onviso:merge(Id, void, void, file). %result in
“outputld.txt” file, other easy options {file, Name},
{file_prefix, Prefix}

Please note:
— You can merge the trace files more than once.

— Even if the target node is under constant use, the merged
logs will always contain the same result as the first merge,
because the tracing stopped then.

A ProTest’y W¥/L>
Copyright 2009

Merge a trace - custom function

> BeginFun = fun(_InitData) —> {ok, 0} end.

> WorkFun = fun(_Node, _Trace, _PidMapping,

Count) —> {ok,
Count + 1} end.

> EndFun = fun(Count) —> io:format ("We
collected ~p traces.~n", [Count]) end.

> onviso:merge(1, BeginFun, WorkFun, EndFun).

Copyright 2009

Short-cuts -- predefined atoms

To make it easier to adapt the tool some simplification are built
in the interface.

1. Predefined match specifications like return’ and 'caller’ for
getting the return values

2. Atoms defining the output in predefined EndFuns during merge
like 'shell’, ‘file', {'file’, Name}, {'file_prefix’, Name}

A ProTest’y W¥/L>
Copyright 2009 property based testing

Predefined examples for most common
merge functions

1. Predefined merge functions for basic profiling either to shell
or file

2. Built in trace and merge with overload protection

Copyright 2009

Exercises

A ProTest’y W¥/L>
Copyright 2009 property based testing

Inviso/Onviso

Aniko Nagyné Vig

.)
X
]

(. N/F4/FL>E _J
V@78 8 0" 4
a o > 4
~ =

Erlang Training and Consulting Ltd

roTest)

property based testing

Contents

Short Onviso command summary
Basic exercises client-server

Elevator exercises

Onviso commands one pager

0. Start up all the target and monitor nodes, set the cookies.
1. Start the trace by calling onviso:trace/2-4 functions with
Pattern list: ex. {client, get, '_', return}

Node list: ex. ' - optional
Flags: ex. {all,[calll} jskdhks

Overload protection

2. Merge or stop:

onviso:stop(Id)

onviso:merge(Id,BeginFun, WorkFun, EndFun)

Copyright 2008

Erlang trace BIFs possible settings

Dynamically enabled. Filtering on pids: existing, new, all, pid()

Flags

= ‘send’, 'receive’ for message passing events

= ‘running’ for scheduling events: ‘in’ and ’out’ messages sent when a process is scheduled
or preempted

= ‘exiting’ for scheduling exiting processes. Message tags: ‘in_exiting’, ‘out_exiting’, and
‘out_exited’.

= ‘procs’ for process-related events. Message tags: ‘spawn’, ‘exit’, ‘link’, ‘unlink’, ‘register’,
‘unregister’, ‘getting_linked’, ‘getting_unlinked’

= ‘call’ for function calls. Message tags: call, return_from It can be combined with arity,
return_to and silent flags. In trace_pattern match_specifications can be defined.

= ‘set_on_spawn’, ‘set_on_first_spawn’, ‘set_on_link’, ‘set_on_first_link’ sets the
inheritance of the trace flags in the new processes

= ‘garbage_collection’. Message tags: ‘gc_start’, ‘gc_stop’.

= ‘timestamp’ and ‘cpu_timestamp’ for including timestamps to each trace message.

Copyright 2008 w

Match specfications

MatchExpression ::= [MatchFunction, ...]

MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

Examples:

. Match an argument list of three where the first and third arguments are
equal:

[({rst, ', 911, 11, [3

. Match all objects with arity > 1 and the first element is ‘elem’, return the
2. element.

[{31, [{==, elem, {element, 1, '$13},{>="{size, '$13,2]],

[{element,2,'$1'}13]

Copyright 2008

Contents

Short Onviso command summary
Basic exercises client-server

Elevator exercises

Client Server Setup

Start and initialise all nodes in the system: in this example the
server and client nodes (Based on the client.erl, server.erl files
and both containing the runtime application)

> client:init('server@laptop').
> server:start().

Start a separate monitoring inviso node (running inviso and onviso
applications)

Set the same cookie on every node:

> erlang:set_cookie(node(),inviso).

Copyright 2008

Exercise 1.1

Start up the traces on the inviso node on the following functions:

server:loop, client:get, client:put

a. Start tracing on the function calls
b. Start tracing on the return values of the function calls in the client
c. Start tracing on the message passing

When starting the trace, try to write first the Patterns, then the node list and the decide
the flags.

NOTE: Don't forget to generate some traffic on the nodes, before merging/stopping.
For stop and merge use the default for all the traces:

onviso:merge(Id, void, void, shell).

Copyright 2008 w

Exercise 1.1 - Solution

a. onviso:trace([{server, loop, '_", [},
{client, put, '_", [I},
{client, get, '_", [1}],
[", 'client@laptop'],
{all,[calll}).
b. onviso:trace([{server, loop, '_", [},
{client, put, '_", [1},
{client, get, '_', return}],
[",'client@laptop'],
{all,[calll}).
c. onviso:trace([{server, '_', '_', [},
{client, '_", '_", [1}],
[",'client@laptop'],
{all,['send', 'receive']}).
Copyright 2008 é%ﬁ_‘/i/

Exercise 1.2

Use any of the previous traces, but instead of printing to the
shell, try to write it to a file.

Try to set the filename in the next step.

Copyright 2008 w

Exercise 1.2 - Solution

NOTE: You don't need to run the trace again, you can simple reuse the Id from
a previous trace.
For starting the trace for example:

onviso:trace([{server, loop, '_', [},
{client, put, '_', [I},
{client, get, '_", [1}],

[",'client@laptop'],

{all,[calll}).
The solution for merge:
onviso:merge(Id, void, void, file).
onviso:merge(Id, void, void,
{file_prefix, “NewMerge” }) % or {file,” New.txt” })

Copyright 2008

Exercise 2

Set up a second client node.

Count how much messages were sent by the clients based on the
traces.

Try to think different solutions.

Copyright 2008 w

Exercise 2 - Solution

Trace:

onviso:trace([{client, put, '_', [1}],
['clientl@laptop', 'client2@laptop'],
{all,[calll}).

Merge:

> BeginFun = fun(_InitData) —> {ok,0} end.

> WorkFun = fun(_Node, _Trace, _PidMapping, Count) —>
{ok, Count + 1} end.

> EndFun = fun(Count) —> io:format("The clients sent ~p messages.~n", [Count])
end.

> onviso:merge(1l, BeginFun, WorkFun, EndFun).

Copyright 2008

Contents

Short Onviso command summary
Basic exercises client-server

Elevator exercises

Elevator Setup

Start the elevator node in the system: the elevator application
(Based on the elevator files and containing the runtime
application and gs)

Start a separate monitoring inviso node (running inviso and onviso
applications)

Set the same cookie on every node:

> erlang:set_cookie(node(),inviso).

0
Copyright 2008 To—

Exercise 3.1

Count how many floors the lifts travelled during the examined
period.

(Going up 3 levels and coming down 2 results in 5 this case)

The elevators can be started by

util:start(Id::int(), Floors::int, Elevators::int())

Copyright 2008 w

Exercise 3.1 Solution

Trace:

onviso:trace([{elevator, closed, '_,
[{[{$1,_3, "1, [{'=:=",move, $11],[1}13], [elevator@aniko-laptop],{all, [call]}).
Merge:

> BeginFun = fun(_InitData) —> {ok,0} end.

> WorkFun = fun(_Node, _Trace, _PidMapping, Count) —>
{ok, Count + 1} end.

> EndFun = fun(Count) —> io:format("The clients sent ~p messages.~n", [Count])

end.

> onviso:merge(1l, BeginFun, WorkFun, EndFun).

Copyright 2008

Exercise 3.2

Count how many times stopped the n. elevator on the m. or
higher floor.

Copyright 2008 w

Exercise 3.2 Solution

Trace:

onviso:trace([{elevator, closed, '_,

[{[{'$1,523,{$3, 31, [{=:=,at_floor,'$113,{>=,'52',M},{’=:=","$3',N}], [I313], ['elevat
or@aniko-laptop,{all,[call]}).

Merge:

> BeginFun = fun(_InitData) —> {ok,0} end.

> WorkFun = fun(_Node, _Trace, _PidMapping, Count) —>
{ok, Count + 1} end.

> EndFun = fun(Count) —> io:format("The clients sent ~p messages.~n", [Count])
end.

> onviso:merge(1l, BeginFun, WorkFun, EndFun).

Copyright 2008

Exercise 4

Try to set and use any of the above traces with the command line
interface

The command line interface can be started by cli:start().

Copyright 2008 w

	Inviso_pres_anim
	Inviso_exercises

