

Unit testing with EUnit

Richard Carlsson

Unit Testing in a Nutshell
● A “unit” can be any well-defined component

– Function, Module, Library/API, Application, ...
● Tests the actual behaviour of program units

– Each single test should try to check just one thing
– A single test can either pass or fail
– Check behaviour according to specification/docs

● A bunch of tests together make up a “test suite”

Eunit in action (the old fib/1)
-module(fib).
-export([fib/1]).

fib(0) -> 1;
fib(1) -> 1.

Step one: include eunit.hrl
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1.

Naming conventions identify tests
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1.

fib0_test() -> ?assert(fib(0) == 1).

Test functions are auto-exported
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1.

fib0_test() -> ?assert(fib(0) == 1).

fib1_test() -> ?assert(fib(1) == 1).

Compiling and running
1> c(fib).
{ok,fib}
2>

The automatic test() function
1> c(fib).
{ok,fib}
2> fib:test().

The automatic test() function
1> c(fib).
{ok,fib}
2> fib:test().
 All 2 tests successful
ok
3>

Adding tests to drive development
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1;
fib(N) when N > 1 -> fib(N-1) * fib(N-2).

fib0_test() -> ?assert(fib(0) == 1).

fib1_test() -> ?assert(fib(1) == 1).

fib2_test() -> ?assert(fib(2) == 2).

Compact code with generators
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1;
fib(N) when N > 1 -> fib(N-1) * fib(N-2).

fib_test_() ->
[?_assert(fib(0) == 1),
 ?_assert(fib(1) == 1),
 ?_assert(fib(2) == 2)].

Compact code with generators
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1;
fib(N) when N > 1 -> fib(N-1) * fib(N-2).

fib_test_() ->
[?_assert(fib(0) == 1),
 ?_assert(fib(1) == 1),
 ?_assert(fib(2) == 2),
 ?_assert(fib(3) == 3),
 ?_assert(fib(4) == 5),
 ?_assert(fib(5) == 8)].

Using eunit:test() to run tests
3> c(fib).
{ok,fib}
4> eunit:test(fib).

Reading error reports
3> c(fib).
{ok,fib}
4> eunit:test(fib).
fib:12:fib_test_...*failed*
::{error,{assertion_failed,
 [{module, fib},
 {line,12,
 {expression, “fib (2) == 2”},
 {expected, true},
 {value, false}]},
...
...
===
 Failed: 4 Aborted: 0 Skipped: 0 Succeeded: 2
5>

Fixing errors
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1;
fib(N) when N > 1 -> fib(N-1) * fib(N-2).

fib_test_() ->
[?_assert(fib(0) == 1),
 ?_assert(fib(1) == 1),
 ?_assert(fib(2) == 2),
 ?_assert(fib(3) == 3),
 ?_assert(fib(4) == 5),
 ?_assert(fib(5) == 8)].

Fixing errors
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1;
fib(N) when N > 1 -> fib(N-1) + fib(N-2).

fib_test_() ->
[?_assert(fib(0) == 1),
 ?_assert(fib(1) == 1),
 ?_assert(fib(2) == 2),
 ?_assert(fib(3) == 3),
 ?_assert(fib(4) == 5),
 ?_assert(fib(5) == 8)].

Also test the error cases
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1;
fib(N) when N > 1 -> fib(N-1) + fib(N-2).

fib_test_() ->
[?_assert(fib(0) == 1),
 ?_assert(fib(1) == 1),
 ?_assert(fib(2) == 2),
 ?_assert(fib(3) == 3),
 ?_assert(fib(4) == 5),
 ?_assert(fib(5) == 8),
 ?_assertError(function_clause, fib(-1))].

All done
5> c(fib).
{ok,fib}
6> eunit:test(fib).
 All 7 tests successful
ok
7>

Motivation

“But I'm a very good programmer – why
should I spend my valuable time writing little

trivial tests?”

Let unit tests help you save time
● Avoid undetected regressions

– Changes of strategy during initial development
– Bug fixes, years later and/or by someone else
– Refactoring/rewriting to add new features

● The tests are “early adopters” of your code
– Discover dependencies that you didn't think about
– Shake out poor API design before it is too late

● You get usage examples for free

Things to test
● Sanity check computed values

– Boundary cases ('reverse' on an empty list, etc.)
– Things that the compiler or Dialyzer cannot detect

(does 'reverse' really reverse the input?)
● Behaviour in case of errors or bad input

– Ensure that it matches the documentation
● Resource management

– Is everything cleaned up, even after a crash?

More things to test
● Process interaction

– What happens if 100 processes try to run your code
at the same time? Are there race conditions?

– Do client processes hang if the server is killed?
– Does your code actually work in the timeout cases?

● Assumptions about third party code
– Write test cases for obscure or undocumented

behaviour that you are relying on

EUnit: Functional unit testing
● The “xUnit family” of frameworks (JUnit, etc.)

are mostly built on object-oriented principles
– Heavy use of inheritance:

● scaffolding (code for running the tests)
● setup/teardown of test contexts (open/close files, etc.)

● We want to be able to handle tests as data
– Lambda expressions (funs) make natural test cases
– Represent test sets as collections (lists) of funs
– Deep lists make it easy to combine test sets

Test case conventions
● A test case is represented as a fun that takes

no arguments
● A test fails if evaluation throws an exception
● Any return value is considered a success

Test = fun () -> ... end,

try Test() of
 _ -> pass
catch
 : -> fail
end

Running tests
● Most basic usage:

eunit:test(TestSet)

● Where TestSet can be:
– a fun (taking zero arguments)
– a module name
– various other things (as we shall see)
– a (deep) list of funs, module names, and

other things

Modules as test sets
● Given a module name (any atom), EUnit will

look for exported functions with special names:
..._test() % simple test

..._test_() % test generator

● Simple test functions are treated just as funs:
they represent a single test case.

● Test generators are called immediately, and
should return a test set (a fun, module name,
list of tests, etc.)

EUnit utility macros
● -include_lib(“eunit/include/eunit.hrl”).

● Make the code more compact and readable
● Generate more informative exceptions

?assert(1 + 1 == 2)

?assertMatch({foo, _}, make_foo(42))

?assertError(badarith, 1/0)

?assertThrow(ouch, throw(ouch))

Test object macros
● Macros whose names begin with “_” wrap their

arguments in a fun, creating a test object:
?_test(Expr) <=> fun()-> Expr end

● All assert macros have _-forms:
?_test(?assert(BoolExpr))
 <=> ?_assert(BoolExpr)

● Usage comparison:

simple_test()-> ?assert(BoolExpr).

fun_test_()-> ?_assert(BoolExpr).

Advanced test descriptors
● Labels

{“Label Text”, Tests}

● Testing applications or directories
{dir, “Directory Path”}
{application, AppName}

● Timeouts
{timeout, Seconds, Tests}

● Running tests in subprocesses
{spawn, Tests}
{spawn, Node, Tests}

More advanced test descriptors
● Specifying the execution order

{inparallel, Tests}
{inorder, Tests}

● Generators
{generator, Fun}
{generator, Module, Function}

● Test setup and cleanup (fixtures)
{setup, SetupFun, % () -> R::any()
 CleanupFun, % (R::any()) -> any()
 (Instantiator % (R::any()) -> Tests
 | Tests) }

And some even more advanced
● Repeated setup and cleanup

{foreach, SetupFun,
 CleanupFun,
 [Instantiator|Tests] }

{foreachx, SetupFunX,
 CleanupFunX,
 [{X::any(), XInstantiator}] }

● Instantiating (distributing over) a set of tests
{with, X::any(),
 [AbstractTestFun::((any()) -> any())] }

Test-driven design
● Write unit tests (and run them, often) while

developing the program, not afterwards
● Write tests for a feature before you start

implementing it (work on minimal “features”)
● Move on immediately when all tests pass
● Good for focus and productivity:

– Concentrate on solving the right problems
– Avoid overspecification and premature optimization

Triangulation
● Start with the simplest possible properties

– Usually things like boundary values
● Implement the simplest possible solutions

– E.g., just hard-code some known return values
– Ensures that the most basic tests are in place

before you start writing any complicated code
● Don't move on until you have tests to force it

– Ensures that you are testing nontrivial properties

Some final tips
● Be sure that the test can actually fail

– Tests that cannot fail are useless
– Insert a bug to trigger it (and remove it again)

● Keep a plaintext TODO-list of ideas for tests
– Helps you focus on the test you're working on

● Your tests are also part of your code base
– Don't lower your standards (too much)
– Avoid copy-pasting tests; refactor when you can

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

