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Unit Testing in a Nutshell
● A “unit” can be any well-defined component

– Function, Module, Library/API, Application, ...
● Tests the actual behaviour of program units

– Each single test should try to check just one thing
– A single test can either pass or fail
– Check behaviour according to specification/docs

● A bunch of tests together make up a “test suite”



  

Eunit in action (the old fib/1)
-module(fib).
-export([fib/1]).

fib(0) -> 1;
fib(1) -> 1.



  

Step one: include eunit.hrl
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1.



  

Naming conventions identify tests
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1.

fib0_test() -> ?assert(fib(0) == 1).



  

Test functions are auto-exported
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1.

fib0_test() -> ?assert(fib(0) == 1).

fib1_test() -> ?assert(fib(1) == 1).



  

Compiling and running
1> c(fib).
{ok,fib}
2> 



  

The automatic test() function
1> c(fib).
{ok,fib}
2> fib:test().



  

The automatic test() function
1> c(fib).
{ok,fib}
2> fib:test().
  All 2 tests successful
ok
3>



  

Adding tests to drive development
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1;
fib(N) when N > 1 -> fib(N-1) * fib(N-2).

fib0_test() -> ?assert(fib(0) == 1).

fib1_test() -> ?assert(fib(1) == 1).

fib2_test() -> ?assert(fib(2) == 2).



  

Compact code with generators
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1;
fib(N) when N > 1 -> fib(N-1) * fib(N-2).

fib_test_() ->
[?_assert(fib(0) == 1),
 ?_assert(fib(1) == 1),
 ?_assert(fib(2) == 2)].



  

Compact code with generators
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1;
fib(N) when N > 1 -> fib(N-1) * fib(N-2).

fib_test_() ->
[?_assert(fib(0) == 1),
 ?_assert(fib(1) == 1),
 ?_assert(fib(2) == 2),
 ?_assert(fib(3) == 3),
 ?_assert(fib(4) == 5),
 ?_assert(fib(5) == 8)].



  

Using eunit:test() to run tests
3> c(fib).
{ok,fib}
4> eunit:test(fib).



  

Reading error reports
3> c(fib).
{ok,fib}
4> eunit:test(fib).
fib:12:fib_test_...*failed*
::{error,{assertion_failed,
          [{module, fib},
           {line,12,
           {expression, “fib ( 2 ) == 2”},
           {expected, true},
           {value, false}]},
...
...
=================================================
  Failed: 4  Aborted: 0  Skipped: 0  Succeeded: 2
5>



  

Fixing errors
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1;
fib(N) when N > 1 -> fib(N-1) * fib(N-2).

fib_test_() ->
[?_assert(fib(0) == 1),
 ?_assert(fib(1) == 1),
 ?_assert(fib(2) == 2),
 ?_assert(fib(3) == 3),
 ?_assert(fib(4) == 5),
 ?_assert(fib(5) == 8)].



  

Fixing errors
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1;
fib(N) when N > 1 -> fib(N-1) + fib(N-2).

fib_test_() ->
[?_assert(fib(0) == 1),
 ?_assert(fib(1) == 1),
 ?_assert(fib(2) == 2),
 ?_assert(fib(3) == 3),
 ?_assert(fib(4) == 5),
 ?_assert(fib(5) == 8)].



  

Also test the error cases
-module(fib).
-export([fib/1]).
-include_lib(“eunit/include/eunit.hrl”).

fib(0) -> 1;
fib(1) -> 1;
fib(N) when N > 1 -> fib(N-1) + fib(N-2).

fib_test_() ->
[?_assert(fib(0) == 1),
 ?_assert(fib(1) == 1),
 ?_assert(fib(2) == 2),
 ?_assert(fib(3) == 3),
 ?_assert(fib(4) == 5),
 ?_assert(fib(5) == 8),
 ?_assertError(function_clause, fib(-1))].



  

All done
5> c(fib).
{ok,fib}
6> eunit:test(fib).
  All 7 tests successful
ok
7>



  

Motivation

“But I'm a very good programmer – why 
should I spend my valuable time writing little 

trivial tests?”



  

Let unit tests help you save time
● Avoid undetected regressions

– Changes of strategy during initial development
– Bug fixes, years later and/or by someone else
– Refactoring/rewriting to add new features

● The tests are “early adopters” of your code
– Discover dependencies that you didn't think about
– Shake out poor API design before it is too late

● You get usage examples for free



  

Things to test
● Sanity check computed values

– Boundary cases ('reverse' on an empty list, etc.)
– Things that the compiler or Dialyzer cannot detect 

(does 'reverse' really reverse the input?)
● Behaviour in case of errors or bad input

– Ensure that it matches the documentation
● Resource management

– Is everything cleaned up, even after a crash?



  

More things to test
● Process interaction

– What happens if 100 processes try to run your code 
at the same time? Are there race conditions?

– Do client processes hang if the server is killed?
– Does your code actually work in the timeout cases?

● Assumptions about third party code
– Write test cases for obscure or undocumented 

behaviour that you are relying on



  

EUnit: Functional unit testing
● The “xUnit family” of frameworks (JUnit, etc.) 

are mostly built on object-oriented principles
– Heavy use of inheritance:

● scaffolding (code for running the tests)
● setup/teardown of test contexts (open/close files, etc.)

● We want to be able to handle tests as data
– Lambda expressions (funs) make natural test cases
– Represent test sets as collections (lists) of funs
– Deep lists make it easy to combine test sets



  

Test case conventions
● A test case is represented as a fun that takes 

no arguments
● A test fails if evaluation throws an exception
● Any return value is considered a success

Test = fun () -> ... end,

try Test() of
  _ -> pass
catch
  _:_ -> fail
end



  

Running tests
● Most basic usage:

eunit:test(TestSet)

● Where TestSet can be:
– a fun (taking zero arguments)
– a module name
– various other things (as we shall see)
– a (deep) list of funs, module names, and 

other things



  

Modules as test sets
● Given a module name (any atom), EUnit will 

look for exported functions with special names:
..._test() % simple test

..._test_() % test generator

● Simple test functions are treated just as funs: 
they represent a single test case.

● Test generators are called immediately, and 
should return a test set (a fun, module name, 
list of tests, etc.)



  

EUnit utility macros
● -include_lib(“eunit/include/eunit.hrl”).

● Make the code more compact and readable
● Generate more informative exceptions

?assert(1 + 1 == 2)

?assertMatch({foo, _}, make_foo(42))

?assertError(badarith, 1/0)

?assertThrow(ouch, throw(ouch))



  

Test object macros
● Macros whose names begin with “_” wrap their 

arguments in a fun, creating a test object:
?_test(Expr)  <=>  fun()-> Expr end

● All assert macros have _-forms:
?_test(?assert(BoolExpr))
 <=> ?_assert(BoolExpr)

● Usage comparison:

simple_test()-> ?assert(BoolExpr).

fun_test_()-> ?_assert(BoolExpr).



  

Advanced test descriptors
● Labels

{“Label Text”, Tests}

● Testing applications or directories
{dir, “Directory Path”}
{application, AppName}

● Timeouts
{timeout, Seconds, Tests}

● Running tests in subprocesses
{spawn, Tests}
{spawn, Node, Tests}



  

More advanced test descriptors
● Specifying the execution order

{inparallel, Tests}
{inorder, Tests}

● Generators
{generator, Fun}
{generator, Module, Function}

● Test setup and cleanup (fixtures)
{setup, SetupFun,        % () -> R::any()
        CleanupFun,      % (R::any()) -> any()
        (Instantiator    % (R::any()) -> Tests
         | Tests) }



  

And some even more advanced
● Repeated setup and cleanup

{foreach, SetupFun,
          CleanupFun,
          [ Instantiator|Tests ] }

{foreachx, SetupFunX,
           CleanupFunX,
           [ {X::any(), XInstantiator} ] }

● Instantiating (distributing over) a set of tests
{with, X::any(),
 [ AbstractTestFun::((any()) -> any()) ] }



  

Test-driven design
● Write unit tests (and run them, often) while 

developing the program, not afterwards
● Write tests for a feature before you start 

implementing it (work on minimal “features”)
● Move on immediately when all tests pass
● Good for focus and productivity:

– Concentrate on solving the right problems
– Avoid overspecification and premature optimization



  

Triangulation
● Start with the simplest possible properties

– Usually things like boundary values
● Implement the simplest possible solutions

– E.g., just hard-code some known return values
– Ensures that the most basic tests are in place 

before you start writing any complicated code
● Don't move on until you have tests to force it

– Ensures that you are testing nontrivial properties



  

Some final tips
● Be sure that the test can actually fail

– Tests that cannot fail are useless
– Insert a bug to trigger it (and remove it again)

● Keep a plaintext TODO-list of ideas for tests
– Helps you focus on the test you're working on

● Your tests are also part of your code base
– Don't lower your standards (too much)
– Avoid copy-pasting tests; refactor when you can
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