
Erlang Multicore support

Behind the scenes



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-282

Erlang VM (BEAM) when we started

 Virtual register machine which scheduled light weight 
processes 

– One single process scheduler and one queue per priority 
level

– Switching between I/O operations and process scheduling

 I/O drivers and “built in functions” (native functions) had 
exclusive access to the data structures

– Network code 
– ETS tables
– Process inspection etc



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-283

Perfect program for using multicore

 A lot of small units of execution
 The parallel mindset has created applications just 

waiting to be spread over several physical cores



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-284

Conversion steps

 Multiple schedulers
 Parallel I/O
 Parallel memory allocation
 Multiple run-queues and generally less global locking



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-285

Multiple schedulers

 Tools
– Locking order and lock-checker
– Ordinary test cases
– Benchmarks (synthetic)

 Techniques
– Own thread library (Uppsala University)
– Lock tables and custom lock implementation for processes
– Lots of conventional mutexes

 Result
– One scheduler per logical core

 Insights
– You will have to make memory/speed tradeoffs
– Lock order enforcement is very helpful



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-286

Parallel I/O

 Tools
– More simple benchmarks
– Customer systems
– Intuition (or – the problem was obvious…)

 Techniques
– More fine granular locking
– Locking on different levels depending on I/O driver implementation
– Scheduling of I/O-operations

 Result
– Real applications parallel…

 Insight
– Doing things at the right time can vastly reduce complexity



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-287

Multiple allocators

 Tools
– Even more benchmarks
– vTune (Intel-specific)
– Thread profiler (Intel-specific)

 Techniques
– Each scheduler has it’s own instance of memory allocators
– The “malloc” implementation was already our own
– Locks are still needed as one scheduler might free another 

schedulers memory

 Result
– Greatly improved performance for CPU intense applications

 Insight
– Not only execution has to be distributed over cores



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-288

Multiple run-queues and generally less 
global locking
 Tools

– Custom lock counting implemented (not cpu-specific)
– More massive multicore CPU’s to test on (Tilera, Nehalem)
– More customer code from more projects

 Techniques
– Distributing data over the schedulers
– Load balancing at certain points
– More fine granular locking (ETS Meta- and shared tables)
– Reimplementation of distribution marshaling to remove need for 

sequential encode/decode
 Results

– Far better performance on massive multicore systems
– Nehalem performance great, but core2 still problematic

 Insight
– No global lock will ever fail to create a bottleneck



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-289

Multiple runq-ueues
Erlang SMP VM (R13) 

Scheduler #1 

Scheduler #3

Scheduler #2

runqueue

Erlang VM

runqueue

runqueue

migration
logic



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2810

Migration logic

 Keep the schedulers equally loaded
 Load balancing after a specific amount of reductions

– Calculate an average run-queue length
– Setup migration paths

 Each scheduler migrates jobs until happy
 If a scheduler has suddenly no job, it starts stealing 

work
 If, at load-balancing, the logic detects to little work for 

the schedulers, some will be temporarily inactivated



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2811

Example of performance gain w/ 
multiple run-queues in TilePro64



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2812

Comparing “Clovertown” Xeon E5310 
to “Gainstown” Xeon X5570

0 2 4 6 8 10 12 14 16 18

0

1

2

3

4

5

6

7

8

9

10
Nehalem
Core

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

Nehalem
Core



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2813

Insights

 No global lock ever goes unpunished
 Data as well as execution has to be distributed over cores

– Malloc and friends will be a bottleneck

 You will have to make memory/speed tradeoffs
 New architectures will give you both new challenges and 

performance boosts
– Revise and rewrite as processors evolve

 Doing things (in the code) at the right time can reduce 
complexity as well as increase performance

 Take the time to use third party tools and to write your 
own.

 Work incrementally



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2814

Tools we’ve used

 Lock checker (implemented in VM) and strict locking 
order

 vTune and thread profiler
 oProfile
 Lock counter (implemented in VM)
 Acumem (www.acumem.com)
 Valgrind
 Benchmarks

– Customers
– Open Source

 Percept (Erlang application parallelism measurement 
tool)

http://www.acumem.com/


© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2815

What now?

 Non uniform memory access
– Schedulers private memory near core
– Distribute processes smarter, taking memory access into 

account
– …

 Delayed deallocation to avoid allocator lock conflicts
– Especially important for Core systems

 Developing our libraries
 Using less memory?
 More measuring, benchmarking, customer tests…



© Ericsson AB 2009 Public Deploying multicore for a highly parallel application 2009-08-2816


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

