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AXE – programmed in PLEX

PLEX 
  Programming language for exchanges)   
  Proprietary
  blocks (processes) and signals
  in-service code upgrade

Eri Pascal

Pre history
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Armstrong, Elshiewy, Virding 
(1986)

Conclusion – Concurrent Logic 
programming with channel 
communication

Phoning philosphers
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The Telephony Algebra - (1985)

    idle(N)   means the subscriber N is idle
    on(N)     means subscribed N in on hook
    ...

    +t(A, dial_tone) means add a dial tone to A
  
 
    process(A, f) :- on(A), idle(A), +t(A,dial-tone),
                            +d(A, []), -idle(A), +of(A)

Using this notation, POTS could be described using fifteen
rules. There was just one major problem: the notation only described
how one telephone call should proceed. How could we do this for
thousands of simultaneous calls?
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The reduction machine - (1985)
A -> B,C,D.
B ->  x,D.
D -> y.
C -> z.

A
B,C,D
x,D,C,D
D,C,D
y,C,D
C,D
z,D
D
Y
{}

A,B,C, D = nonterminals
x,y,z = terminals

To reduce X,...Y...
If X is a nonterminal replace it by it's definition
If X is a terminal execute it and then do ...Y...

We can interrupt this at any time
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Aside – term rewriting 
is tail recursive

A -> x,y,A

A
x,y,A
y,A
A
x,y,A
y,A
A
...

loop(X) ->
    ...
    loop(X).
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factorial
rule(fac, 0)  -> [pop,{push,1}];
rule(fac, _)  -> [dup,{push,1},minus,{call,fac},times].

run() -> reduce0([{call,fac}], [3]).

reduce0(Code, Stack) ->
    io:format("Stack:~p Code:~p~n",[Stack,Code]),
    reduce(Code, Stack).

reduce([],[X])                          -> X;
reduce([{push,N}|Code], T)    -> reduce0(Code, [N|T]);
reduce([pop|Code], T)            -> reduce0(Code, tl(T));
reduce([dup|Code], [H|T])       -> reduce0(Code, [H,H|T]);
reduce([minus|Code], [A,B|T]) -> reduce0(Code, [B-A|T]);
reduce([times|Code], [A,B|T]) -> reduce0(Code, [A*B|T]);
reduce([{call,Func}|Code], [H|_]=Stack) -> 
    reduce0(rule(Func, H) ++ Code, Stack).
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factorial
 > fac:run(). 

Stack:[3] Code:[{call,fac}]
Stack:[3] Code:[dup,{push,1},minus,{call,fac},times]
Stack:[3,3] Code:[{push,1},minus,{call,fac},times]
Stack:[1,3,3] Code:[minus,{call,fac},times]
Stack:[2,3] Code:[{call,fac},times]
Stack:[2,3] Code:[dup,{push,1},minus,{call,fac},times,times]
Stack:[2,2,3] Code:[{push,1},minus,{call,fac},times,times]
Stack:[1,2,2,3] Code:[minus,{call,fac},times,times]
Stack:[1,2,3] Code:[{call,fac},times,times]
Stack:[1,2,3] Code:[dup,{push,1},minus,{call,fac},times,times,times]
Stack:[1,1,2,3] Code:[{push,1},minus,{call,fac},times,times,times]
Stack:[1,1,1,2,3] Code:[minus,{call,fac},times,times,times]
Stack:[0,1,2,3] Code:[{call,fac},times,times,times]
Stack:[0,1,2,3] Code:[pop,{push,1},times,times,times]
Stack:[1,2,3] Code:[{push,1},times,times,times]
Stack:[1,1,2,3] Code:[times,times,times]
Stack:[1,2,3] Code:[times,times]
Stack:[2,3] Code:[times]
Stack:[6] Code:[]

787 
Kreds/sec
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1985 - 1989
Timeline

- Programming POTS/LOTS/DOTS (1885)
- A Smalltalk model of POTS
- A telephony algebra (math)
- A Prolog interpretor for the telephony algebra
- Added processes to prolog
- Prolog is too powerful (backtracking)
- Deterministic prolog with processes
- “Erlang” !!! (1986)
- ...
- Compiled to JAM code (1989)
- ... 
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The manual
1986 (or 85)
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Running a 
program
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The Prolog interpreter (1986)
version 1.06 
dated
1986-12-18

1.03 “lost in the 
mists of time”
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1988 – Interpreted Erlang 

- 4 days for a complete re-
write
- 245 reductions/sec
- semantics of language 
worked out
- Robert Virding joins the 
“team”
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1989 – The need for speed

ACS- Dunder 
- “we like the language but it's too slow” - must be 40 times    
  faster

Mike Williams writes 
the emulator (in C)

Joe Armstrong writes 
the compiler

Robert Virding writes 
the libraries
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● JAM has thee global data areas

 code space + atom table + scheduler queue
● Each process has a stack and a heap
● Erlang data structures are represented as 

tagged pointers on the stack and heap

How does the JAM work?
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JAM
● Compile code into sequences of instructions

that manipulate data structures stored on 
the stack and heap (Joe)

● Write code loader, scheduler and garbage 
collector (Mike)

● Write libraries (Robert)
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a

Atoms:  example 'abc'

3
a b c

Integers:  example 42

I 42

Tuples: {abc,42,{10,foo}}

T 3A

a

I 42
T 2A

I 10
a

3
foo

Atom table

Tagged Pointers
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3
a b c

a

Atom tablefoo() -> {abc, 10}.

pushAtom abc

pushInt, 10

a

i 10

stack:

stack:

mkTuple, 2 

T

a

i 10

A 2

heap:

stack:
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Compiling foo() -> {abc,10}

switch(*pc++){
    case 16: // push short int
          *stop++ = mkint(*pc++);
          break;
    case 20: // mktuple
          arity = *pc++;
          *htop++ = mkarity(arity);
          while(arity>0){
               *htop++ = *stop--;
               arity--;
           };
          break;

{enter, foo,2}
{pushAtom, “abc”}
{pushInt, 10},
{mkTuple, 2},
ret

16,10,20,2

Byte code

pc = program counter
stop = stack top
htop = heap top

Part of the byte code interpreter
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fac(0) -> 1;
fac(N) -> N * fac(N-1)

{info, fac, 1}
 {try_me_else, label1}
        {arg, 0}
        {getInt, 0}
        {pushInt, 1}
        ret
 label1: try_me_else_fail
        {arg, 0}
        dup
        {pushInt, 1}
        minus
        {callLocal, fac, 1}
        times
        ret

sys_sys.erl  18 dummy
sys_parse.erl 783 erlang parser
sys_ari_parser.erl 147 parse arithmetic expressions
sys_build.erl 272 build function call arguments
sys_match.erl  253 match function head arguments
sys_compile.erl 708 compiler main program
sys_lists.erl  85 list handling
sys_dictionary.erl  82 dictionary handler
sys_utils.erl  71 utilities
sys_asm.erl 419 assembler 
sys_tokenise.erl      413 tokeniser 
sys_parser_tools.erl  96 parser utilities
sys_load.erl 326 loader
sys_opcodes.erl 128 opcode definitions
sys_pp.erl 418 pretty printer
sys_scan.erl 252 scanner
sys_boot.erl  59 bootstrap
sys_kernel.erl   9 kernel calls
18 files    4544   

An early JAM compiler (1989)

Like the WAM with added primitives for
spawning processes and message passing
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factorial
rule(fac, 0)  -> 
   [pop,{push,1}];
rule(fac, _)  -> 
   [dup,{push,1},
    Minus,
    {call,fac},
    times].
 

fac(0) -> 1;
fac(N) -> N * fac(N-1)

{info, fac, 1}
 {try_me_else, label1}
        {arg, 0}
        {getInt, 0}
        {pushInt, 1}
        ret
 label1: try_me_else_fail
        {arg, 0}
        dup
        {pushInt, 1}
        minus
        {callLocal, fac, 1}
        times
        ret
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Jam improvements
● Uncessary stack -> heap movements
● Better with a register machine
● Convert to register machine by emulating top 

N stack locations with registers
● And a lot more ...
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Alternate implementations

VEE (Virding's Erlang Engine)
● Experiment with different memory model

● Single shared heap with real-time garbage collector 
(reference counting)

● Blindingly fast message passing

BUT
● No overall speed gain and more complex internals
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Alternate implementations

Strand88 machine
● An experiment using another HLL as “assembler”
● Strand88 a concurrent logic language – every reduction 

a process and messages as cheap as lists
● Problem was to restrict parallelism

BUT
● Strand's concurrency model was not good fit for Erlang
● Worked but not as well as the JAM
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Speedups 
● Prolog Erlang Interpretor (1988) – 245 reds/sec
● Prolog JAM emulator – 35 reds/sec
● C Erlang JAM emulator (1989) – 30K reds/sec
● C Erlang BEAM emulator (2010) – 9 Mega reds/sec
● Erlang JAM emulator (2010) – 787K reds/sec
● Speedup 787K/35 = 22400 in 21 years
● K^21 = 22400 so K = 1.61 (61% / year) Smartness   
● or K^21 = 767K/30K = 1.16 (16% / year) Mores law
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Links

A B

C

A is linked to B
B is linked to C

If any process crashes an
EXIT message is sent to 
the linked processes

This idea comes from the 
“C wire” in early telephones
(ground the C wire to 
cancel the call)

Encourages “let it crash” programming
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By 1990 things 
were going 

so well 
that we
could

...
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Buy a train set
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We added new stuff
● Distribution
● OTP structure
● BEAM
● HIPE
● Type tools
● Philosophy

● Bit syntax
● Compiling pattern 

matching
● OTP tools
● Documented way of 

doing things
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TEAM

Turbo Erlang Abstract Machine

 By Bogumil Hausman

● Make a new efficient implementation of 
Erlang
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TEAM
● New machine design

● Register machine
● Generate native code by 

smart use of GNU CC
● Same basic structures 

and memory design as 
JAM
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TEAM
● Significantly faster than the JAM

BUT
● Module compilation was slow
● Code explosion, resultant code size was too big for 

customers

SO
● Hybrid machine with both native code and emulator
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TEAM --> BEAM

Bogdan's Erlang Abstract Machine

And lots of improvements have been made and 
lots of good stuff added!

Better GC (generational), SMP, NIFs, etc. etc.
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- Pattern matching over bits

-define(IP_VERSION, 4).
-define(IP_MIN_HDR_LEN, 5).

DgramSize = size(Dgram),
case Dgram of 
    <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16, 
      ID:16, Flgs:3, FragOff:13,
      TTL:8, Proto:8, HdrChkSum:16,
      SrcIP:32,
      DestIP:32, RestDgram/binary>> when HLen>=5, 
4*HLen=<DgramSize ->
        OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
        <<Opts:OptsLen/binary,Data/binary>> = RestDgram,
    ...
end.

unpack(<<Red:5,Green:6,Blue:5>>) ->
    ...

Due to Klacke
(Claes Vikström)

(unpack Ipv4 datagram)

Bit syntax
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Compiling pattern matching
● Erlang semantics say match clauses sequentially

BUT
● Don't have to if you are smart!
● Can group patterns and save testing

The Implementation of Functional Languages

Simon Peyton Jones

(old, from 1987, but still full of goodies)
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Compiling pattern matching



  38

Compiling pattern matching



  39

The Erlang VM as an assembler
● Efene

● Mariano Guerra
● Reia

● Tony Arcieri
● http://wiki.reia-lang.org/wiki/Reia_Programming_Language

● LFE (Lisp Flavoured Erlang)
● http://github.com/rvirding/lfe
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The 
End

 


