
 1

The evolution of
the Erlang VM

Joe Armstrong
Robert Virding

 2

1985 - 1998

 3

AXE – programmed in PLEX

PLEX
 Programming language for exchanges)
 Proprietary
 blocks (processes) and signals
 in-service code upgrade

Eri Pascal

Pre history

 4

Armstrong, Elshiewy, Virding
(1986)

Conclusion – Concurrent Logic
programming with channel
communication

Phoning philosphers

 5

The Telephony Algebra - (1985)

 idle(N) means the subscriber N is idle
 on(N) means subscribed N in on hook
 ...

 +t(A, dial_tone) means add a dial tone to A

 process(A, f) :- on(A), idle(A), +t(A,dial-tone),
 +d(A, []), -idle(A), +of(A)

Using this notation, POTS could be described using fifteen
rules. There was just one major problem: the notation only described
how one telephone call should proceed. How could we do this for
thousands of simultaneous calls?

 6

The reduction machine - (1985)
A -> B,C,D.
B -> x,D.
D -> y.
C -> z.

A
B,C,D
x,D,C,D
D,C,D
y,C,D
C,D
z,D
D
Y
{}

A,B,C, D = nonterminals
x,y,z = terminals

To reduce X,...Y...
If X is a nonterminal replace it by it's definition
If X is a terminal execute it and then do ...Y...

We can interrupt this at any time

 7

Aside – term rewriting
is tail recursive

A -> x,y,A

A
x,y,A
y,A
A
x,y,A
y,A
A
...

loop(X) ->
 ...
 loop(X).

 8

factorial
rule(fac, 0) -> [pop,{push,1}];
rule(fac, _) -> [dup,{push,1},minus,{call,fac},times].

run() -> reduce0([{call,fac}], [3]).

reduce0(Code, Stack) ->
 io:format("Stack:~p Code:~p~n",[Stack,Code]),
 reduce(Code, Stack).

reduce([],[X]) -> X;
reduce([{push,N}|Code], T) -> reduce0(Code, [N|T]);
reduce([pop|Code], T) -> reduce0(Code, tl(T));
reduce([dup|Code], [H|T]) -> reduce0(Code, [H,H|T]);
reduce([minus|Code], [A,B|T]) -> reduce0(Code, [B-A|T]);
reduce([times|Code], [A,B|T]) -> reduce0(Code, [A*B|T]);
reduce([{call,Func}|Code], [H|_]=Stack) ->
 reduce0(rule(Func, H) ++ Code, Stack).

 9

factorial
 > fac:run().

Stack:[3] Code:[{call,fac}]
Stack:[3] Code:[dup,{push,1},minus,{call,fac},times]
Stack:[3,3] Code:[{push,1},minus,{call,fac},times]
Stack:[1,3,3] Code:[minus,{call,fac},times]
Stack:[2,3] Code:[{call,fac},times]
Stack:[2,3] Code:[dup,{push,1},minus,{call,fac},times,times]
Stack:[2,2,3] Code:[{push,1},minus,{call,fac},times,times]
Stack:[1,2,2,3] Code:[minus,{call,fac},times,times]
Stack:[1,2,3] Code:[{call,fac},times,times]
Stack:[1,2,3] Code:[dup,{push,1},minus,{call,fac},times,times,times]
Stack:[1,1,2,3] Code:[{push,1},minus,{call,fac},times,times,times]
Stack:[1,1,1,2,3] Code:[minus,{call,fac},times,times,times]
Stack:[0,1,2,3] Code:[{call,fac},times,times,times]
Stack:[0,1,2,3] Code:[pop,{push,1},times,times,times]
Stack:[1,2,3] Code:[{push,1},times,times,times]
Stack:[1,1,2,3] Code:[times,times,times]
Stack:[1,2,3] Code:[times,times]
Stack:[2,3] Code:[times]
Stack:[6] Code:[]

787
Kreds/sec

 10

1985 - 1989
Timeline

- Programming POTS/LOTS/DOTS (1885)
- A Smalltalk model of POTS
- A telephony algebra (math)
- A Prolog interpretor for the telephony algebra
- Added processes to prolog
- Prolog is too powerful (backtracking)
- Deterministic prolog with processes
- “Erlang” !!! (1986)
- ...
- Compiled to JAM code (1989)
- ...

 11

The manual
1986 (or 85)

 12

Running a
program

 13

The Prolog interpreter (1986)
version 1.06
dated
1986-12-18

1.03 “lost in the
mists of time”

 14

1988 – Interpreted Erlang

- 4 days for a complete re-
write
- 245 reductions/sec
- semantics of language
worked out
- Robert Virding joins the
“team”

 15

1989 – The need for speed

ACS- Dunder
- “we like the language but it's too slow” - must be 40 times
 faster

Mike Williams writes
the emulator (in C)

Joe Armstrong writes
the compiler

Robert Virding writes
the libraries

 16

● JAM has thee global data areas

 code space + atom table + scheduler queue
● Each process has a stack and a heap
● Erlang data structures are represented as

tagged pointers on the stack and heap

How does the JAM work?

 17

JAM
● Compile code into sequences of instructions

that manipulate data structures stored on
the stack and heap (Joe)

● Write code loader, scheduler and garbage
collector (Mike)

● Write libraries (Robert)

 18

a

Atoms: example 'abc'

3
a b c

Integers: example 42

I 42

Tuples: {abc,42,{10,foo}}

T 3A

a

I 42
T 2A

I 10
a

3
foo

Atom table

Tagged Pointers

 19

3
a b c

a

Atom tablefoo() -> {abc, 10}.

pushAtom abc

pushInt, 10

a

i 10

stack:

stack:

mkTuple, 2

T

a

i 10

A 2

heap:

stack:

 20

Compiling foo() -> {abc,10}

switch(*pc++){
 case 16: // push short int
 *stop++ = mkint(*pc++);
 break;
 case 20: // mktuple
 arity = *pc++;
 *htop++ = mkarity(arity);
 while(arity>0){
 *htop++ = *stop--;
 arity--;
 };
 break;

{enter, foo,2}
{pushAtom, “abc”}
{pushInt, 10},
{mkTuple, 2},
ret

16,10,20,2

Byte code

pc = program counter
stop = stack top
htop = heap top

Part of the byte code interpreter

 21

fac(0) -> 1;
fac(N) -> N * fac(N-1)

{info, fac, 1}
 {try_me_else, label1}
 {arg, 0}
 {getInt, 0}
 {pushInt, 1}
 ret
 label1: try_me_else_fail
 {arg, 0}
 dup
 {pushInt, 1}
 minus
 {callLocal, fac, 1}
 times
 ret

sys_sys.erl 18 dummy
sys_parse.erl 783 erlang parser
sys_ari_parser.erl 147 parse arithmetic expressions
sys_build.erl 272 build function call arguments
sys_match.erl 253 match function head arguments
sys_compile.erl 708 compiler main program
sys_lists.erl 85 list handling
sys_dictionary.erl 82 dictionary handler
sys_utils.erl 71 utilities
sys_asm.erl 419 assembler
sys_tokenise.erl 413 tokeniser
sys_parser_tools.erl 96 parser utilities
sys_load.erl 326 loader
sys_opcodes.erl 128 opcode definitions
sys_pp.erl 418 pretty printer
sys_scan.erl 252 scanner
sys_boot.erl 59 bootstrap
sys_kernel.erl 9 kernel calls
18 files 4544

An early JAM compiler (1989)

Like the WAM with added primitives for
spawning processes and message passing

 22

factorial
rule(fac, 0) ->
 [pop,{push,1}];
rule(fac, _) ->
 [dup,{push,1},
 Minus,
 {call,fac},
 times].

fac(0) -> 1;
fac(N) -> N * fac(N-1)

{info, fac, 1}
 {try_me_else, label1}
 {arg, 0}
 {getInt, 0}
 {pushInt, 1}
 ret
 label1: try_me_else_fail
 {arg, 0}
 dup
 {pushInt, 1}
 minus
 {callLocal, fac, 1}
 times
 ret

 23

Jam improvements
● Uncessary stack -> heap movements
● Better with a register machine
● Convert to register machine by emulating top

N stack locations with registers
● And a lot more ...

 24

Alternate implementations

VEE (Virding's Erlang Engine)
● Experiment with different memory model

● Single shared heap with real-time garbage collector
(reference counting)

● Blindingly fast message passing

BUT
● No overall speed gain and more complex internals

 25

Alternate implementations

Strand88 machine
● An experiment using another HLL as “assembler”
● Strand88 a concurrent logic language – every reduction

a process and messages as cheap as lists
● Problem was to restrict parallelism

BUT
● Strand's concurrency model was not good fit for Erlang
● Worked but not as well as the JAM

 26

Speedups
● Prolog Erlang Interpretor (1988) – 245 reds/sec
● Prolog JAM emulator – 35 reds/sec
● C Erlang JAM emulator (1989) – 30K reds/sec
● C Erlang BEAM emulator (2010) – 9 Mega reds/sec
● Erlang JAM emulator (2010) – 787K reds/sec
● Speedup 787K/35 = 22400 in 21 years
● K^21 = 22400 so K = 1.61 (61% / year) Smartness
● or K^21 = 767K/30K = 1.16 (16% / year) Mores law

 27

Links

A B

C

A is linked to B
B is linked to C

If any process crashes an
EXIT message is sent to
the linked processes

This idea comes from the
“C wire” in early telephones
(ground the C wire to
cancel the call)

Encourages “let it crash” programming

 28

By 1990 things
were going

so well
that we
could

...

 29

Buy a train set

 30

We added new stuff
● Distribution
● OTP structure
● BEAM
● HIPE
● Type tools
● Philosophy

● Bit syntax
● Compiling pattern

matching
● OTP tools
● Documented way of

doing things

 31

TEAM

Turbo Erlang Abstract Machine

 By Bogumil Hausman

● Make a new efficient implementation of
Erlang

 32

TEAM
● New machine design

● Register machine
● Generate native code by

smart use of GNU CC
● Same basic structures

and memory design as
JAM

 33

TEAM
● Significantly faster than the JAM

BUT
● Module compilation was slow
● Code explosion, resultant code size was too big for

customers

SO
● Hybrid machine with both native code and emulator

 34

TEAM --> BEAM

Bogdan's Erlang Abstract Machine

And lots of improvements have been made and
lots of good stuff added!

Better GC (generational), SMP, NIFs, etc. etc.

 35

- Pattern matching over bits

-define(IP_VERSION, 4).
-define(IP_MIN_HDR_LEN, 5).

DgramSize = size(Dgram),
case Dgram of
 <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,
 ID:16, Flgs:3, FragOff:13,
 TTL:8, Proto:8, HdrChkSum:16,
 SrcIP:32,
 DestIP:32, RestDgram/binary>> when HLen>=5,
4*HLen=<DgramSize ->
 OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
 <<Opts:OptsLen/binary,Data/binary>> = RestDgram,
 ...
end.

unpack(<<Red:5,Green:6,Blue:5>>) ->
 ...

Due to Klacke
(Claes Vikström)

(unpack Ipv4 datagram)

Bit syntax

 36

Compiling pattern matching
● Erlang semantics say match clauses sequentially

BUT
● Don't have to if you are smart!
● Can group patterns and save testing

The Implementation of Functional Languages

Simon Peyton Jones

(old, from 1987, but still full of goodies)

 37

Compiling pattern matching

 38

Compiling pattern matching

 39

The Erlang VM as an assembler
● Efene

● Mariano Guerra
● Reia

● Tony Arcieri
● http://wiki.reia-lang.org/wiki/Reia_Programming_Language

● LFE (Lisp Flavoured Erlang)
● http://github.com/rvirding/lfe

 40

The
End

