Fnet

TCP/IP- n:Pure: Erang

Geoff Gant<nem@erlang.geek.nz>

Fnet

1SR UDP/AR in:Pure(ish) Erlang

Geoff Gant<nem@erlang.geek.nz>

Who?

x Erlang hacker
x archaelus on irc/stackoverflow/erlang-guestions/github

x \Vellington -> Paris -> San Francisco

Friday, 26 March 2010

AlsSO from
N/

My flows:don:t:glow
IKe phosphorous:

What Is an Enet?

= http://github.com/archaelus/enet

x A port program for-using a TAP-device
x A suite of packet encoders/decoders
x A collection of network interface functions

x A primitive |P-stack

Friday, 26 March 2010

http://github.com/archaelus/enet
http://github.com/archaelus/enet

Why would you do that??

® Funsies

® [0 learn how the P -world Works

x [0 bulld a library of [P modules for future work
x [0 get more control over the network stack

x [0 migrate a live TCP socket

Friday, 26 March 2010

Outline

x Port programs

x Binary syntax story time

x [cpdump in Erlang

x Slowest [oopback: in the west

x \Where to from here?

Friday, 26 March 2010

Ah1d

4556

!

Ricardo Pereira

et - S8 8 & % " » i e e -~ o e e

Port programs
Keeping my:G:code out of your VM,

Friday, 26 March 2010

Playing well with others

x Port programs
x Port drivers

x NIFS

x Shell commands

x Network servers

= FFI (EEP-7)

Port programs

x Stable
x Bun as separate OS processes

x My C code Is hot good. Keep: it out of your VM.

® Simple structure
x Communicate with erlang on stdin/out

x Communicate with external resources via AP

Friday, 26 March 2010

Port Communication

{packet, 2} read/write

#Port<0.1> /dev/tap0
Pid | <<Packet>> [

beam OS process kernel

enet_iface

Friday, 26 March 2010

Ibevent

x [|e bufferevents to stdin to run:code when erlang
sends us data

® [|e an event to the TAP 1d to run code when we receive
packets from the network

» Queue output tasks in the input handlers

Friday, 26 March 2010

Jeff Cubina

Friday, 26 March 2010

A sad tale...

Disk Insertion

The disk you inserted was not readable by this computer.

T o) ianore) oEiecto
Initialize...) _ Ignore) ([Eject

Friday, 26 March 2010

A plan begins to form

GUID Partition Table Scheme

Primary GPT Header
Entry 1|Entry 2|Entry 3 |Entry 4

Entries 5-128

Remaining Partitions

Entries 5-128

Secondary GPT Header

Secondary GPT

Friday, 26 March 2010

MBR

Structure of a Master Boot Record

Address

Description
Hex | Oct

mbr(<< _Code:440/binary,
DiskSig:4/binary,
0, 0,
PartTable:64/binary,
(16#aa55):16/1ittle, _Rest/binary>>) ->

Code Area

440 Optional Disk signature

{fmbr, DiskSig,
[mbr_partition(Part)
[<<!71:;"t:16/binar'y>> <= PartTable] };
mbr(_) ->
not_mbr.

444 |Usually Nulls; 0x0000

Table of primary partitions
446 |(Four 16-byte entries, IBM Partition Table
scheme)

510 55h MBR signature;

511 | AAh OxAA55'"

MBR, total size: 446 +64 + 2 =

Friday, 26 March 2010

VIBR Partitions

Layout of one 16-byte partition record

Field
Offset length Description

(bytes)

status'”’ (Ox80 = bootable (active), 0x00 = non-bootable,
other = invalid™®)

mbr_partition(<< Status
FirstBlockCHS:3/binary,

CHS address of first block in partition.[Q]
The format is described in the next 3 bytes.

LockCHS :3/binary,
First BA:32/1ittle,
BlockLength:32/1ittle>>) ->
{partition, case Status of
16#80 -> bootable;
® -> non_bootable;

_ => invalid

head!''”!

sector is in bits 5—0[”:; bits 9-8 of cylinder are in bits 7-6

bits 7-0 of cylinderml
[13][14]

partition type

CHS address of last block in partition. '
The format is described in the next 3 bytes.

head

sector is in bits 5-0; bits 9-8 of cylinder are in bits 7-6
bits 7-0 of cylinder

LBA of first sector in the partition''®

number of blocks in partition, in little-endian format"'®

Friday, 26 March 2010

GPT Header

Partition table format
Offset Length Contents

0 8 bytes Signature ("EFI PART", 45 46 49 20 50 41 52 54)

8 4 bytes Revision (For version 1.0, the value is 00 00 01 00)
12 4 bytes Header size (in bytes, usually 5C 00 00 00 meaning 92 bytes)
16 4 bytes CRC32 of header (0 to header size), with this field zeroed during calculation
20 4 bytes reserved, must be zero
24 8 bytes Current LBA (location of this header copy)
32 8 bytes Backup LBA (location of the other header copy)
40 8 bytes First usable LBA for partitions (primary partition table last LBA + 1)
48 8 bytes Last usable LBA (secondary partition table first LBA- 1)

16 bytes Disk GUID (also referred as UUID on UNIXes)

72 8 bytes Partition entries starting LBA (always 2 in primary copy)
80 4 bytes Number of partition entries
84 4 bytes Size of a partition entry (usually 128)

88 4 bytes CRC32 of partition array

92 7 reserved, must be zeroes for the rest of the block (420 bytes for a 512-byte LBA)
LBA Size TOTAL

Friday, 26 March 2010

GPT Header

gpt(<<
Revls 32/11tt1e
Header ;;Le.32/11ttle,
reg_h‘LRL:32/little,
(0):32/11ittle,
“,_E* 64/11ittle,
‘nateLBA:64/1ittle,

) leLBA:64/11ttle,
yleLBA:64/11ittle,
D:16/binary,
onEntryLBA:64/11ittle,

rtitions:32/1ittle,

irtitionEntry:32/11ittle,
nEntryArrayCRC:32/1ittle,
ved: (512- 92)/b1nary,

'"*/blnary>> = Block) ->
<<Header:HeaderSize/binary, _/binary>> = Block,
{gpt, [{revision, Revision},

{header, Header: 2, Header(R(,
: leac 16#FFFFFFFF},
{lbas’ [{my; MyLB
{alternate,
{first, Firs
{last, LastUsc
{partition_entries,
{QUid» D1skGUID }’
{partltlon entries,

Friday, 26 March 2010

GPT Partition

gpt_partition(<< 0:(128*8) >>) ->
empty_gpt_part;
GUID partition entry format gpt_partition(<<TypeGUID:16/binary,
Par ID:16/binary,
Offset Length Contents StartLBA:64/little,
EndLBA:64/11ttle,
Attributes:8/binary,
16 16 bytes Unique partition GUID Name:72/binary>>) ->
) :) Si1ze = (:;.’j."_:_E;A.-(::ti'j"i._E;:‘) * 512,
32 8 bytes First LBA (little-endian) {opt_part, gpt_part_name(Name),
: . StartLBA EndLBA
40 8 bytes Last LBA (inclusive, usually odd) [gzzgt’ Endl BA _}-f,f,,f- B:’+ 13 BATs
{size, [{Size / 1024 / 1024 / 1024, gig},
{Size / 1024 / 1024, meg},
56 | 72 bytes Partition name (36 UTF-16LE code units) {Size / 1024, Kk},
{Bkée’b}]}’
128 TOTAL fguids, [{type, gpt_part_type(TypeGUID
{part, PartGUID}]},
{attributes, Attributes}]}.

0 16 bytes Partition type GUID

48 8 bytes Attribute flags (e.g. bit 60 denotes read-only)

Friday, 26 March 2010

Fthernet

80 00 20 7A 3F 3E 80 00 20 20 3A AE 08 00 IP, ARP, etc.
Destination MAC Address Source MAC Address EtherType Payload

MAC Header Data
(14 bytes) (46 - 1500 bytes)

decode(<<Dest:6/binary,
Src:6/binary,
Type:16/big,
Data/binary>>, Opt

_) ——

PType = decode_type(Type),
#eth{src=decode_addr(Src),dst=decode_addr(Dest),
type=PType,data=enet_codec:decode(PType,Data,Options
decode(_Frame, _) ->
{error, bad_packet}.

encode(#eth{src=Src,dst=Dest,type=Type,data=Data})
when (Src), (Dest), (Type),
<<Dest:6/binary,
Src:6/binary,
Type:16/big,
Data/binary>>.

Friday, 26 March 2010

ANnd SO on...

x cthernet x [CMPO
= ipv4 x udp6
x ipv6 x 1CP6
® [cmp4 x arp4d
x udp4 ® dns

x tcp4

Friday, 26 March 2010

Network Stacks...

Application

B S
UDP | UDP
Transport
p

IP
o Internet

Frame B e dats Frame
header footer

Friday, 26 March 2010

All filthy lies

)

/
\

UDPi UDP
header | data

header

IP

Frame
header

Application

Transport

FFFfffuuuuuuuu

Frame data

Frame
footer

Friday, 26 March 2010

Internet

uJ4w.-cuwpvyﬂwﬂ”“yﬂﬁﬂyﬂﬂ“yﬂ““vw#Mvuwu.‘yu.u B e T T

Tcpdump in Erlang

Friday, 26 March 2010

Enet Intertace

enet_tap

enet_itace #Port<0.1>

gen_event

Friday, 26 March 2010

O
—
D
()

O

=

D)
O
A
O

b

Friday, 26 March 2010

Erloopback

Dialtip speed witnout an acoustic coupler

Friday, 26 March 2010

PINg over ethernet

ARP who-has 192.168.2.2

ARP 192.168.2.2
is-at 4A:6E:01:1B:19:8F

ICMP Echo Request
192.168.2.1 -> 192.168.2.2

-

ICMP Echo Reply
192.168.2.2 -> 192.168.2.1

Friday, 26 March 2010

Problems, TODO

x Erlangy pulbsub
x [CP fsm
x Rewrite and flesh out the interface code

x SCIP

x Socket migration

Friday, 26 March 2010

