
  



  

Specifications are good to have

But they're such a pain to write



  

Enter QuickSpec!



  

What's QuickSpec?
QuickSpec takes a collection of functions and finds 
nice equations about them!

Caveat
Pure functions only

How does QuickSpec work?
Step 1: run a lot of tests on the functions

Step 2: work out what they do :)
(less facetious answer later)



  

A function

sort([]) →
[];

sort([X|Xs]) →
lists:merge([X], sort(Xs)).

Let's find out what it does!



  

What QuickSpec thinks

● First write some boilerplate in sort_sig.erl
● Then:
1> laws:laws(sort_sig, sort).
... QuickSpec thinks for a bit, and then ...
   1. sort([]) == []
   2. sort(reverse(Xs)) == sort(Xs)
   3. sort(sort(Xs)) == sort(Xs)
   4. sort(Ys ++ Xs) == sort(Xs ++ Ys)
   5. sort([X]) == [X]



  

What about usort?

● usort is like sort but removes duplicates
30> laws:laws(sort_sig, usort).
... QuickSpec thinks for a bit, and then ...
   1. usort([]) == []
   2. usort(reverse(Xs)) == usort(Xs)
   3. usort(usort(Xs)) == usort(Xs)
   4. usort(Ys ++ Xs) == usort(Xs ++ Ys)
   5. usort(Xs ++ Xs) == usort(Xs)
   6. usort([X]) == [X]



  

QuickSpec can help you understand 
functions



  

The boilerplate

● Tell QuickSpec what kind of equations to look 
for: which functions to use...

(which we can abbreviate like this:)

fun_types() ->
    [{lists, usort, [list], list}|
     stdsigs:list_funs(int, list)].

fun_types() ->
    [{lists, usort, [list], list},
     {erlang, '++', [list, list], list},
     {lists, reverse, [list], list},

...].



  

The boilerplate

● ...and variables:

var_types() ->
    [{[xs, ys, zs], list},
     {[x, y, z], int}].



  

The boilerplate

● Tell QuickSpec how to generate random test 
data to test the equations:

list() ->
    list(int()).



  

QuickSpec does the rest!



  

What can QuickSpec actually find?

● QuickSpec looks for equations built from the functions 
and variables you specify

● QuickSpec can only find equations that are not too 
deeply nested

● But: if an equation is not too deep, it will always be 
found

● Are all the equations true? Maybe not, but they're well-
tested

Xs                       depth 1
Xs ++ []                 depth 2
sort(Xs) ++ sort(Ys)     depth 3
Xs ++ sort(Ys ++ Zs)     depth 4

Too
deep



  

Looking at reverse instead

● Since reverse is in the signature, we can just as 
easily look at laws for that:

1> laws:laws(sort_sig, reverse).
... QuickSpec thinks for a bit, and then ...
   1. reverse([]) == []
   2. reverse(reverse(Xs)) == Xs
   3. sort(reverse(Xs)) == sort(Xs)
   4. reverse([X]) == [X]
   5. reverse(Xs) ++ reverse(Ys) == reverse(Ys ++ Xs)
   6. reverse(Xs) ++ ([X]) == reverse([X|Xs])



  

QuickSpec can discover properties 
for you



  

Another example:
queues



  

The queue API

1 2 3

1 2 3 4

Q = 

in(4, Q) = 

{head(Q), tail(Q)} = 1 2 3{ , }



  

The queue API, in reverse

1 2 3

4 1 2 3

Q = 

in_r(4, Q) = 

{daeh(Q), liat(Q)} = 3 1 2{ , }

Or lait(Q)!



  

DEMO
queuesig.erl



  

The mystery of the missing law

QuickSpec prints

head(in_r(X,Q)) == X

tail(in_r(Y,Q)) == tail(in_r(X,Q))

But what about

tail(in_r(X,Q)) == Q?

Maybe QuickSpec didn't find it? No!



  

What can QuickSpec actually find?

● QuickSpec looks for equations built from the functions 
and variables you specify

● QuickSpec can only find equations that are not too 
deeply nested

● But: if an equation is not too deep, it will always be 
found

● Are all the equations true? Maybe not, but they're well-
tested

Xs                       depth 1
Xs ++ []                 depth 2
sort(Xs) ++ sort(Ys)     depth 3
Xs ++ sort(Ys ++ Zs)     depth 4

Too
deep



  

Missing equations

● If an equation doesn't get printed, either
● It has a too deeply-nested expression
● It uses some function that's not in your signature
● It follows from the equations that were printed
● It's false!

● The missing equation must be false...really?!



  

Why is our equation false?

● Test it with QuickCheck:

prop_in_r_tail() ->
    ?FORALL(X, int(),
    ?FORALL(Q, laws:symbolic(queuesig, queue),
    queue:tail(queue:in_r(X, eval(Q))) == eval(Q))).

1> eqc:quickcheck(queuesig:prop_in_r_tail()).
.....Failed! After 6 tests.
0
{call,queue,in,[0,{call,queue,new,[]}]}
false
2> Q = queue:in(0, queue:new()).
{[0],[]}
3> queue:tail(queue:in_r(0, Q)).
{[],[0]}

QuickSpec
provides a
generator



  

Observation functions

tail(in_r(X, Q)) /= Q, because the two 
queues might have different representations!

But the queues should have the same contents.

Let's compare the contents of the queues 
instead of the representations.

observe(X, queue) →
queue:to_list(X).



  

The mystery of the missing law
(again)

QuickSpec prints

is_empty(in(X,Q2)) == is_empty(in(X,Q))

is_empty(in(Y,Q)) == is_empty(in(X,Q))

Why not simply

is_empty(in(X,Q)) == false?



  

Missing equations
(again)

● If an equation doesn't get printed, either
● It has a too deeply-nested expression
● It uses some function that's not in your 

signature
● It's false!

● Our signature doesn't have false in it!
● Answer: add all the boolean operations to the 

signature



  

Nice laws

● daeh(reverse(Q)) == head(Q)

tail(reverse(Q)) == reverse(lait(Q))
● Symmetry laws: whatever head does to the front of 

a queue, daeh does to the back of the queue
● in_r(X,in(Y,Q)) == in(Y,in_r(X,Q))

● Adding to different ends of the queue doesn't 
interfere

● in_r(head(Q),tail(Q)) == in(daeh(Q),lait(Q))

● Both equal to Q, but not if Q is empty!



  

Testing against a model

Add to_list and some list functions to the 
signature:

[X|to_list(Q)] == to_list(in_r(X,Q))

to_list(Q) ++ ([X]) == to_list(in(X,Q))
hd(to_list(Q)) == head(Q)
tl(to_list(Q)) == to_list(tail(Q))

to_list(reverse(Q)) == reverse(to_list(Q))

Tells you what happens when the queue is 
represented by a list...



  

Testing against a model

Add to_list and some list functions to the 
signature:

[X|        Q ] ~=         in_r(X,Q) 

        Q  ++ ([X]) ~=         in(X,Q) 
hd(        Q ) ~= head(Q)
tl(        Q ) ~= tail(Q)

        reverse(Q)  ~= reverse(        Q )

A complete specification!



  

So, in summary...

● QuickSpec isn't magic
● You need to think if you want the best specification

● Still, the results can be quite illuminating
● Good for

● Getting properties for free
● Understanding other people's code
● Finding bugs



  

How QuickSpec works



  

How does QuickSpec work?

Generate all expressions up to a given depth:

(But picture thousands of expressions instead of 7)

Ys
Xs++Ys

Xs

Xs++[]
[]++Xs
[]++[]
[]



  

Then test which expressions are equal.

To begin with, QuickSpec assumes that 
everything is equal.

How does QuickSpec work?

[]++[]
[]

Xs

Xs++[]
[]++Xs

Ys
Xs++Ys



  

Try a random test case.

Xs = [], Ys = [1]

How does QuickSpec work?

[]++[]
[]

Xs

Xs++[]
[]++Xs

Ys
Xs++Ys



  

Try a random test case.

Xs = [1], Ys = []

How does QuickSpec work?

Xs

Xs++[]
[]++Xs
[]++[]
[]

Xs++Ys
Ys



  

Print out equations:

How does QuickSpec work?

Xs
Xs++[]
[]++Xs

[]++[]
[] Xs++YsYs

[]++[] == []
Xs++[] == Xs
[]++Xs == Xs



  

but



  

Some numbers

● A binary heaps example:
● 5392 terms generated
● 3653 equivalence classes
● 1739 valid equations
● 27 equations printed

● How do we get from 1739 to 27?



  

Pruning

Xs++[] == Xs
[]++Xs == Xs

[]++[] == []

Some equations are redundant; don't print them.

But it's really hard to tell if an equation is redundant!

We borrow some magic data structures from the 
nice theorem proving people.



  

Regular expressions

Things that match strings.
● abc matches the string “abc”
● ab*c matches “abbbbbbbc”
● a(b|c)* matches “abccccbbc”
● ab+ matches “abb” but not “a”
● a? matches only “a” or “”



  

Regular expression functions

run(string, string) → boolean

e.g. run(“aaaa”, “a*”)
Too unstructured!

String to be
parsed

Regular
expression



  

Regular expression operators

run(string, regex) → boolean

star(regex) → regex

char(char) → regex

any_char() → regex

concat(regex, regex) → regex

choice(regex, regex) → regex

For example,
concat(char($a), star(char($b)))

A regex is
still a string

really

star(R) ->
  “(“ ++ R ++ “)*”.



  

Are two regular expressions equal?

Easiest way to find out: test on random input

First try:

observe(R, regex) →

re:run(..., R).



  

Are two regular expressions equal?

Easiest way to find out: test on random input

Second try:

observe(R, regex, S) →
    re:run(S, R).

context() →
    list(char()).



  

OK, let's try it out!

What could be wrong?

2> laws:laws(re_sig).
Classifying terms of depth 0... 2 terms....
2 classes.
Classifying terms of depth 1... 10 terms....
10 classes.
Classifying terms of depth 2... 78 terms.......
<<computer goes into a sulk>>



  

The killer regular expression

2> re:run("abc", "((a|())+)+").
<<computer goes into a sulk>>

What to do?
● Fix the regular expression library
● Avoid generating iffy regular expressions
● Write my own regex library



  

DEMO
nfa_re_sig.erl



  

It's a bug!

R*;S* = (R|S)*

R|S* = (R|S)*

RRRRRSSS RSRRSSR

RSRRSSR
R
or

SSSSS



  

Future improvements



  

Conditional equations: arrays

get(I,set(I,X,A)) == X

get(J,set(I,X,new())) == get(I,set(J,X,new()))

set(I,X,set(I,Y,A)) == set(I,X,A)

set(J,X,set(I,X,A)) == set(I,X,set(J,X,A))

We would rather get
I /= J =>
  set(J,Y,set(I,X,A)) == set(I,X,set(J,Y,A))



  

Testing imperative programs

● Imperative queues...
● empty(), empty() == empty()
● X = front(), Y = front(), add(Z)

==
X = front(), add(Z), Y = front()

● Ostrich approach: pretend that the program is a 
pure function (from input state to output state) 
and everything works as before

● In practice, this puts a lot of stress on 
QuickSpec



  

Want to try it out?

http://tinyurl.com/quickspec-talk
Install QuickCheck mini from your CD (it's free!) 
or get it from 
http://quviq.com/downloads/eqcmini.zip

Comes with examples and tutorial slides and a 
paper

http://tinyurl.com/quickspec-talk
http://quviq.com/downloads/eqcmini.zip

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

