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Software in modern cars
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Software Platform Q

Many components that need to communicate with
each other

More diversity, faster time to market, higher
complexity....

We have seen this before ©

Solutions:

- Standardization of components

- Standard platform (operating system)
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AUTOSAR a consortium standard Q
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Interoperability Q

AUTOSAR specification open for interpretation.

Even if a component follows the standard, there is
no guarantee at all that it will work In
combination with other standard components

nothing new... we have seen that before ©

The evil is hidden in configurations: each Node in
the car has typically its own set of options, and

software supplier
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Interoperability Q

AutoSAR specification open for interpretation.

Even if a component follows the standard, there is
no guarantee at all that it will work in
combination with other stan{ Solution: h

Spend your budget
on testing instead

of development

nothing new... we have seen

The evil is hidden in confi
the car has typically its own set of options, and

software supplier
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Message Q

Software systems more complex every day...
... more components
... more possible configurations per component

... more component interactions
Traditional testing insufficient to keep up with this

We need to change our testing methods!
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Erlang to test C Q

Using Erlang to test C software
- High level language: easier to write test code
- Good tools to support testing

but... we need to connect to C code
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Quvig’s C link Q

All information you need to write marshalling code
Is in the C (header) files.

Thus, we wrote a C parser in Erlang, extract all
type information and generate the link between
C and Erlang.
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Example

Suppose we have C file example.c

// Sum an array of integers
int sum (int *array, int len) {

int n;
int sum = 0;
for (n = 0; n < len; n++)

sum += arrayl[n];
return sum;
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Example Q

Erlang shell used to communicate with C

1> eqgc c:start (example) .
ok

2> P = egc c:create array(int, [1, 3, 3, 8]).
{ptr,1nt,1048864}

3> example:sum (P, 4).
15

4> eqgqc c:free(P).
ok
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Example

Erlang shell used to communicate with C

1> eqgc c:start (example) .
ok

2> P = egc c:create array(int, [1, 3,
{ptr,1nt, 10488064}

3> example:sum (P, 4).
15

4> eqc c:free(P).
ok
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QuickCheck Q

From test case to property

Instead of specifying one or two test cases to
demonstrate that the software fulfills a certain

property, we specify and have the
tests automatically generated!

Model based testing with controlled random
generation of test cases
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Testing hard real-time C Q

How difficult is it to test real-time C code?

Mentor Graphics hosts master student thesis
project to test CanNM with QuickCheck using
this C link.
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Scheduling Q

CanNM is scheduled as one of many tasks

CanNm invoked by calling
C function CanNM_Main()
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Scheduling Q

CanNM is scheduled as one of many tasks

Assumption:
One time unit elapses before CanNm_Main() is called

(In fact, C implementation handles the timers, not the scheduler)
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Scheduling Q

CanNM is scheduled as one of many tasks

CanNm_RxIndication() CanNm_NetworkRequest()

Other tasks communicate by calling CanNM interface functions

These update data structures in memory

Assumption: Only one interaction in each slot
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AUTOSAR component
as UML state machine

sm CanNmAlgorithm /

CAN
Network Management

Now... make a

QuickCheck model from
this state machine
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QuickCheck model Q
State transitions as Erlang data structure

bus sleep mode( ) ->
[ {power off, {call, ?MODULE, powerOff, []}},
{bus_sleep mode, {call, ?MODULE, main, []}},
{bus_sleep mode, {call, ?MODULE, 'CanNm RxIndication', [1d(),u8()]}},
{repeat message_state, {call,?MODULE, 'Nm PassiveStartUp', []1}},
{repeat message_ state, {call, ?MODULE, 'CanNm NetworkRequest', []}}].

repeat message_state( ) ->
[ {normal operation_state, {call, ?MODULE,main, []}},
{ready sleep state, {call, ?’MODULE, main, []}},
{repeat message_state, {call, ?MODULE,main, []}},
{repeat message_ state, {call, ?MODULE, 'CanNm_ RxIndication', [1id(),u8()]}},
{repeat message_ state, {call, ?MODULE, 'CanNm_ TxConfirmation', [1d()]}}].
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QuickCheck model Q

Model how additional state data changes:
timers, network status, ...

next state data(repeat message state, repeat message state,S, V,{ , ,main, }) ->
S#can nm{repeatMessageTimer = S#can nm.repeatMessageTimer-1,
nmTimeoutTimer =

case S#can nm.nmTimeoutTimer of
0 -> ?NMTIMEOUT;

N -> N-1
end};
next state data(repeat message state, repeat message_ state,Ss, Vv,{ , , , }) ->
S#can nm{repeatMessageTimer = S#can nm.repeatMessageTimer-1,

nmTimeoutTimer = ?NMTIMEOUT} ;
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Testing hard real-time C Q

How difficult is it to test real-time C code?

Master student thesis project to test CanNM with
QuickCheck using this C link.

Result: - we know how to do it
- it is not that much work
- we found ambiguities in the specification

Erlang User Conference QuviQ
2010



Testing real-time C Q

CanNm was modeled using a state machine.

Not all AUTOSAR components are specified as
state machines... can we do the rest as well?

Sep/Oct 2010: Experiment (with Mentor Graphics)
- Test COM/PDUR with QuickCheck

- In parallel manual testing of same software
(estimated 20 weeks)

approx 8000 lines of C code, representative
component
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Testing COM/PduRouter Q

* We have built a model for testing COM and
PduRouter

— I —
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=
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QuickCheck for automotive Q

We created a model
The model is configurable with an XML config file

Marshalling code is automatically generated from
header files

C stub is only a 400 lines of code
QuickCheck model is 800 lines of code

Total: 2 person weeks work
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Testing Automotive software

Conclusions:

We gain productivity
- Erlang less lines of code
- QuickCheck model instead of test cases

We have a scalable solution for AUTOSAR

In the future...
buy a car that has been tested with Erlang!
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