QuviQ

Testing Automotive Software
with Erlang

Thomas Arts
Chalmers / Quviq AB

In collaboration with
Juan Puig, Anders Kallerdahl and Ulf Norell

Erlang Solutions Mentor Graphics Quviq

Test

property based testing

Software in modern cars

S/W size in new car moc

500

450

400

350

w
o
o

N
wu
o

Binary size [Mbyte]
S
o

150

100

50

1998 2000 2002 2004 2006 2008 2010 2012 2014
Yeal

|lVehicle B Infotainmen

source: Ulrik Eklund

Software Platform Q

Many components that need to communicate with
each other

More diversity, faster time to market, higher
complexity....

We have seen this before ©

Solutions:

- Standardization of components

- Standard platform (operating system)

Erlang User Conference QuviQ
2010

AUTOSAR a consortium standard Q

Erlang User Conference QuviQ
2010

Interoperability Q

AUTOSAR specification open for interpretation.

Even if a component follows the standard, there is
no guarantee at all that it will work In
combination with other standard components

nothing new... we have seen that before ©

The evil is hidden in configurations: each Node in
the car has typically its own set of options, and

software supplier

Erlang User Conference QuviQ
2010

Interoperability Q

AutoSAR specification open for interpretation.

Even if a component follows the standard, there is
no guarantee at all that it will work in
combination with other stan{ Solution: h

Spend your budget
on testing instead

of development

nothing new... we have seen

The evil is hidden in confi
the car has typically its own set of options, and

software supplier

Erlang User Conference QUViQ
2010

Message Q

Software systems more complex every day...
... more components
... more possible configurations per component

... more component interactions
Traditional testing insufficient to keep up with this

We need to change our testing methods!

Erlang User Conference QuviQ
2010

Erlang to test C Q

Using Erlang to test C software
- High level language: easier to write test code
- Good tools to support testing

but... we need to connect to C code

Erlang User Conference QuviQ
2010

Quvig’s C link Q

All information you need to write marshalling code
Is in the C (header) files.

Thus, we wrote a C parser in Erlang, extract all
type information and generate the link between
C and Erlang.

Erlang User Conference QuviQ
2010

Example

Suppose we have C file example.c

// Sum an array of integers
int sum (int *array, int len) {

int n;
int sum = 0;
for (n = 0; n < len; n++)

sum += arrayl[n];
return sum;

Erlang User Conference QuviQ
2010

Example Q

Erlang shell used to communicate with C

1> eqgc c:start (example) .
ok

2> P = egc c:create array(int, [1, 3, 3, 8]).
{ptr,1nt,1048864}

3> example:sum (P, 4).
15

4> eqgqc c:free(P).
ok

Erlang User Conference QuviQ
2010

Example Q

Erlang shell used to communicate with C

1> eqgc c:start (example) .
ok

2> P = egc c:create array(int
{ptr,int,1048864}

3> example:sum (P, 4).
15

4> eqc c:free(P).
ok

Erlang User Conference QuviQ
2010

Example

Erlang shell used to communicate with C

1> eqgc c:start (example) .
ok

2> P = egc c:create array(int, [1, 3,
{ptr,1nt, 10488064}

3> example:sum (P, 4).
15

4> eqc c:free(P).
ok

Erlang User Conference QuviQ
2010

QuickCheck Q

From test case to property

Instead of specifying one or two test cases to
demonstrate that the software fulfills a certain

property, we specify and have the
tests automatically generated!

Model based testing with controlled random
generation of test cases

Erlang User Conference QuviQ
2010

Testing hard real-time C Q

How difficult is it to test real-time C code?

Mentor Graphics hosts master student thesis
project to test CanNM with QuickCheck using
this C link.

Erlang User Conference QuviQ
2010

sm CanNmAlgorithm

AUTOSAR component poor (@) S

Anitiglization @ PowerOff

as UML state machine %:‘:m ﬂw«w\/
7

tartUp{),

Wail Bus-Sleep Timer has expirad
/ Nen_BusSleepMode(),

CAN T
Network Management SO N Y

1 Nm_NetworkStartindication();

CanNmNetworkRequest

/ Start NM-Timeout Tjmer; Start Repeat)) .
NM-Timeout Timer Bas expired
Message Timer; Nrm_NetworkMode(); | Start Wait Bus-Slebp Timer:

Nm_PrepareBusSiappMode();

e CanNm_Rxdndication(}; Ne Mode CanNm_TxConfirmation(),)
! Start NM-Timeq ill'mer; ﬁn NM-Timesut Timer;

NM-Timaeout Timer has expred (Repeat Message State
{ Start NM-Timeout Timer; l

¢ Timer has expired;

CanNm_StopBusLghcRecuction]);

NM-Timeout Tmer has expired
{ Start NM-Timaout Timer;
Nm_NetworkTimeculException(),

[l -

nNm_NetworkRequest();
Normal Operation State =L Siad Sus | oad Recuction 7~ Ready Sleap State

CanNm_NetworkRelease()

N
Erlang User Conference il T rouwsmtossRucoton 1 1]

CanNm_TxConfirmation(}, CanNm_Rxirdicasion(); CanNm_Rxingication(); CanNm_TxConfirmation(};
20 1 0 I Start NM-Timeout Timer, ! Start NM-Timaout Timer: / Start NM-Timecut Timer. / Start NM-Timesut Timer,

Scheduling Q

CanNM is scheduled as one of many tasks

CanNm invoked by calling
C function CanNM_Main()

Erlang User Conference QuviQ
2010

Scheduling Q

CanNM is scheduled as one of many tasks

Assumption:
One time unit elapses before CanNm_Main() is called

(In fact, C implementation handles the timers, not the scheduler)

Erlang User Conference QuviQ
2010

Scheduling Q

CanNM is scheduled as one of many tasks

CanNm_RxIndication() CanNm_NetworkRequest()

Other tasks communicate by calling CanNM interface functions

These update data structures in memory

Assumption: Only one interaction in each slot

Erlang User Conference QuviQ
2010

AUTOSAR component
as UML state machine

sm CanNmAlgorithm /

CAN
Network Management

Now... make a

QuickCheck model from
this state machine

Erlang User Conference
2010

CanNm_Init()
PawerOf! . Anitilization @ PowerOX
of CanNm /ﬁ
werOf!

/ Nen_BusSleepMode(),

Wail Bus-Sleep Timer has expirad (

Prepare Bus-Sleep Mode

Nm_Pass

tartUp{),
CanNm_| ication]),

CarNm \etworkRequest
I Nrn_NetworkStart ndication(),

/ Start NM-Timeout Tjmer; Siart Repeat
Message Timer; Nm_NetworkMode();

ation(),

CanNm_NetwprkRequest();

NM-Timeout Timer Bas expired
/ Start Wail Bus-Slepp Timer,
Nm_PrepareBusSieppMode()

NM-Timeout Timer has expired
{ Start NM-Timaout Timer;
Nm_NetworkTimeculException(),

[l

CanNm_NetworkRequest();

a CanNm_Rxdndication(; Ne Mode CanNm_TxConfirmation(),)
/ Start NM-Timed Jl'\lmr; ﬁn NM-Timecut Timer;
NM-Timeout Timer has expred / Ropoat Mossage State
{ Start NM-Timeout Timer; 2
Repeat Mi g¢ Timer has expired:

[Netwerk Reldased]

Normal Operation State =L Stad Bus | oad Recuction.

Ready Sleep State

CanNm_NetworkRelease()

/|E I /|§ l / Stop Bus Leac Reduction

CanNm_TxConfirmation(), CanNm_Rxindication(};
I Start NM-Timeout Timer, { Start NM-Timaout Timer;

K 1
CanNm_Rxincication(); ~ CanNm_TxConfirmaion();
/ Start NM-Timecut Timer; / Start NM-Timeout Timer,

QuickCheck model Q
State transitions as Erlang data structure

bus sleep mode() ->
[{power off, {call, ?MODULE, powerOff, []}},
{bus_sleep mode, {call, ?MODULE, main, []}},
{bus_sleep mode, {call, ?MODULE, 'CanNm RxIndication', [1d(),u8()]}},
{repeat message_state, {call,?MODULE, 'Nm PassiveStartUp', []1}},
{repeat message_ state, {call, ?MODULE, 'CanNm NetworkRequest', []}}].

repeat message_state() ->
[{normal operation_state, {call, ?MODULE,main, []}},
{ready sleep state, {call, ?’MODULE, main, []}},
{repeat message_state, {call, ?MODULE,main, []}},
{repeat message_ state, {call, ?MODULE, 'CanNm_ RxIndication', [1id(),u8()]}},
{repeat message_ state, {call, ?MODULE, 'CanNm_ TxConfirmation', [1d()]}}].

Erlang User Conference QuviQ
2010

QuickCheck model Q

Model how additional state data changes:
timers, network status, ...

next state data(repeat message state, repeat message state,S, V,{ , ,main, }) ->
S#can nm{repeatMessageTimer = S#can nm.repeatMessageTimer-1,
nmTimeoutTimer =

case S#can nm.nmTimeoutTimer of
0 -> ?NMTIMEOUT;

N -> N-1
end};
next state data(repeat message state, repeat message_ state,Ss, Vv,{ , , , }) ->
S#can nm{repeatMessageTimer = S#can nm.repeatMessageTimer-1,

nmTimeoutTimer = ?NMTIMEOUT} ;

Erlang User Conference QuviQ
2010

Testing hard real-time C Q

How difficult is it to test real-time C code?

Master student thesis project to test CanNM with
QuickCheck using this C link.

Result: - we know how to do it
- it is not that much work
- we found ambiguities in the specification

Erlang User Conference QuviQ
2010

Testing real-time C Q

CanNm was modeled using a state machine.

Not all AUTOSAR components are specified as
state machines... can we do the rest as well?

Sep/Oct 2010: Experiment (with Mentor Graphics)
- Test COM/PDUR with QuickCheck

- In parallel manual testing of same software
(estimated 20 weeks)

approx 8000 lines of C code, representative
component

Erlang User Conference QuviQ
2010

Testing COM/PduRouter Q

* We have built a model for testing COM and
PduRouter

— I —
L~
=

Erlang User Conference QuviQ
2010

QuickCheck for automotive Q

We created a model
The model is configurable with an XML config file

Marshalling code is automatically generated from
header files

C stub is only a 400 lines of code
QuickCheck model is 800 lines of code

Total: 2 person weeks work

Erlang User Conference QuviQ
2010

Testing Automotive software

Conclusions:

We gain productivity
- Erlang less lines of code
- QuickCheck model instead of test cases

We have a scalable solution for AUTOSAR

In the future...
buy a car that has been tested with Erlang!

Erlang User Conference QuviQ
2010

