
Testing Automotive Software
with Erlang

Thomas Arts
Chalmers / Quviq AB

in collaboration with
Juan Puig, Anders Kallerdahl and Ulf Norell

 Erlang Solutions Mentor Graphics Quviq

Software in modern cars

source: Ulrik Eklund

Software Platform

Many components that need to communicate with
each other

More diversity, faster time to market, higher
complexity....

We have seen this before 
Solutions:
-  Standardization of components
-  Standard platform (operating system)

Erlang User Conference
2010

AUTOSAR a consortium standard

source: www.autosar.org

Erlang User Conference
2010

Interoperability

AUTOSAR specification open for interpretation.

Even if a component follows the standard, there is
no guarantee at all that it will work in
combination with other standard components

nothing new... we have seen that before 
The evil is hidden in configurations: each Node in

the car has typically its own set of options, and
software supplier

Erlang User Conference
2010

Interoperability

AutoSAR specification open for interpretation.

Even if a component follows the standard, there is
no guarantee at all that it will work in
combination with other standard components

nothing new... we have seen that before 
The evil is hidden in configurations: each Node in

the car has typically its own set of options, and
software supplier

Solution:
Spend your budget
on testing instead
of development

Erlang User Conference
2010

Message

Software systems more complex every day...
 ... more components

 ... more possible configurations per component
 ... more component interactions

Traditional testing insufficient to keep up with this
We need to change our testing methods!

Erlang User Conference
2010

Erlang to test C

Using Erlang to test C software
-  High level language: easier to write test code
-  Good tools to support testing

but... we need to connect to C code

Erlang User Conference
2010

Quviq’s C link

All information you need to write marshalling code
is in the C (header) files.

Thus, we wrote a C parser in Erlang, extract all
type information and generate the link between
C and Erlang.

Erlang User Conference
2010

Example

Suppose we have C file example.c

// Sum an array of integers
int sum (int *array, int len) {
 int n;
 int sum = 0;
 for (n = 0; n < len; n++)
 sum += array[n];
 return sum;
}

Erlang User Conference
2010

Example

Erlang shell used to communicate with C

1> eqc_c:start(example).

ok

2> P = eqc_c:create_array(int, [1, 3, 3, 8]).
{ptr,int,1048864}

3> example:sum(P, 4).
15

4> eqc_c:free(P).
ok

Erlang User Conference
2010

Example

Erlang shell used to communicate with C

1> eqc_c:start(example).

ok

2> P = eqc_c:create_array(int, [1, 3, 3, 8]).
{ptr,int,1048864}

3> example:sum(P, 4).
15

4> eqc_c:free(P).
ok

Erlang User Conference
2010

•  parse example.c
•  create a c program that
listens to a socket
•  create example.beam and
example.hrl with all functions
from example.C
•  start C program in a
separate thread

Example

Erlang shell used to communicate with C

1> eqc_c:start(example).

ok

2> P = eqc_c:create_array(int, [1, 3, 3, 8]).
{ptr,int,1048864}

3> example:sum(P, 4).
15

4> eqc_c:free(P).
ok

Erlang User Conference
2010

an array is created in the
C thread and the pointer
returned points to
memory in that thread

QuickCheck

From test case to property

Instead of specifying one or two test cases to
demonstrate that the software fulfills a certain
property, we specify the property and have the
tests automatically generated!

Model based testing with controlled random
generation of test cases

Erlang User Conference
2010

Testing hard real-time C

How difficult is it to test real-time C code?

Mentor Graphics hosts master student thesis
project to test CanNM with QuickCheck using
this C link.

Erlang User Conference
2010

AUTOSAR component
as UML state machine

CAN
Network Management

Erlang User Conference
2010

Scheduling

CanNM is scheduled as one of many tasks

CanNm invoked by calling
C function CanNM_Main()

Erlang User Conference
2010

Scheduling

CanNM is scheduled as one of many tasks

Assumption:
One time unit elapses before CanNm_Main() is called

(In fact, C implementation handles the timers, not the scheduler)

Erlang User Conference
2010

Scheduling

CanNM is scheduled as one of many tasks

Other tasks communicate by calling CanNM interface functions

These update data structures in memory

Assumption: Only one interaction in each slot

CanNm_RxIndication() CanNm_NetworkRequest()

Erlang User Conference
2010

AUTOSAR component
as UML state machine

CAN
Network Management

Now... make a
QuickCheck model from
this state machine

Erlang User Conference
2010

QuickCheck model

State transitions as Erlang data structure

bus_sleep_mode(_) ->
 [{power_off,{call,?MODULE,powerOff,[]}},
 {bus_sleep_mode,{call,?MODULE,main,[]}},
 {bus_sleep_mode,{call,?MODULE,'CanNm_RxIndication',[id(),u8()]}},
 {repeat_message_state,{call,?MODULE,'Nm_PassiveStartUp',[]}},
 {repeat_message_state,{call,?MODULE,'CanNm_NetworkRequest',[]}}].

repeat_message_state(_) ->
 [{normal_operation_state,{call,?MODULE,main,[]}},
 {ready_sleep_state,{call,?MODULE,main,[]}},
 {repeat_message_state,{call,?MODULE,main,[]}},
 {repeat_message_state,{call,?MODULE,'CanNm_RxIndication',[id(),u8()]}},
 {repeat_message_state,{call,?MODULE,'CanNm_TxConfirmation',[id()]}}].

Erlang User Conference
2010

QuickCheck model

Model how additional state data changes:
timers, network status, ...
next_state_data(repeat_message_state,repeat_message_state,S,_V,{_,_,main,_}) ->
 S#can_nm{repeatMessageTimer = S#can_nm.repeatMessageTimer-1,

 nmTimeoutTimer =

 case S#can_nm.nmTimeoutTimer of

 0 -> ?NMTIMEOUT;

 N -> N-1

 end};

next_state_data(repeat_message_state,repeat_message_state,S,_V,{_,_,_,_}) ->
 S#can_nm{repeatMessageTimer = S#can_nm.repeatMessageTimer-1,

 nmTimeoutTimer = ?NMTIMEOUT};

Erlang User Conference
2010

Testing hard real-time C

How difficult is it to test real-time C code?

Master student thesis project to test CanNM with
QuickCheck using this C link.

Result: - we know how to do it
 - it is not that much work
 - we found ambiguities in the specification

Erlang User Conference
2010

Testing real-time C

CanNm was modeled using a state machine.
Not all AUTOSAR components are specified as

state machines... can we do the rest as well?

Sep/Oct 2010: Experiment (with Mentor Graphics)
-  Test COM/PDUR with QuickCheck
-  In parallel manual testing of same software

(estimated 20 weeks)

approx 8000 lines of C code, representative
component

Erlang User Conference
2010

Testing COM/PduRouter

•  We have built a model for testing COM and
PduRouter

XML
config

QuickCheck
model

Test
case

AUTOSAR
implementation

Stubs

Erlang User Conference
2010

QuickCheck for automotive

We created a model
The model is configurable with an XML config file

Marshalling code is automatically generated from
header files

C stub is only a 400 lines of code
QuickCheck model is 800 lines of code

Total: 2 person weeks work

Erlang User Conference
2010

Testing Automotive software

Conclusions:

We gain productivity
 - Erlang less lines of code
 - QuickCheck model instead of test cases

We have a scalable solution for AUTOSAR

In the future...
 buy a car that has been tested with Erlang!

Erlang User Conference
2010

