Testing database applications with QuickCheck
— Tutorial —

Laura M. Castro

Universidade da Corufia (Spain)

Stockholm, 15th November 2010

= X
.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 1/23



Outline

0 What is a database application?

9 Why do DB applications require special testing?

e The theory: how to test a database application with QuickCheck
e The practise: testing a simple e-shop

e Summing up

=<

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 2/23



What is a database application?

A database or data-intensive application is a software system which:
@ makes intensive use of great amounts of data,

@ relies on external storage sources for persistence (e.g., a database).

[

(g

=<

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 3/23



What is a database application?

A database or data-intensive application is a software system which:
@ makes intensive use of great amounts of data,

@ relies on external storage sources for persistence (e.g., a database).

online -
shop

[

=<

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 3/23



What is a database application?

A database or data-intensive application is a software system which:
@ makes intensive use of great amounts of data,

@ relies on external storage sources for persistence (e.g., a database).

online -
hop’.

{l

=<

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 3/23



What is a database application?

A database or data-intensive application is a software system which:
@ makes intensive use of great amounts of data,

@ relies on external storage sources for persistence (e.g., a database).

{l

=<

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 3/23



Why do DB applications require special testing?

Database or data-intensive applications are software systems which:
@ impose complex constraints on the data they handle,

@ their correct operation depends on their enforcement.

A

-

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 4/23



Why do DB applications require special testing?

Database or data-intensive applications are software systems which:
@ impose complex constraints on the data they handle,

@ their correct operation depends on their enforcement.

- —

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 4/23



Why do DB applications require special testing?

Database or data-intensive applications are software systems which:
@ impose complex constraints on the data they handle,

@ their correct operation depends on their enforcement.

4

(g

These constraints are usually referred to as business rules. J

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 4/23



Business Rules
What are they?

@ “Statements that define or constrain some aspect of a business (.. .)
intended to assert business structure or to control or influence
behavior”

(B.R. Group, Defining Business Rules — What are they really?)

@ “Definitions of how the business should be carried out and
constraints on the business” (I. Sommerville, Software Engineering)

@ “Software is the realization of business rules”
(R.S. Pressman, Software Engineering — A practitioner’s approach)

=<

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 5/23



Business Rules

Where are they?

APPLICATION INTERFACE

APPLICATION BUSINESS LOGIC

STORAGE ACCESS

Erlang User Conference (2010)

— (m— ([ —
——— (— (—

Tutorial Workshop

=<

Testing DB apps with QC 6/23



Business Rules

Where are they?

APPLICATION INTERFACE

APPLICATION BUSINESS LOGIC

only basic
constraints STORAGE ACCESS
(E/R) I

Erlang User Conference (2010)

Tutorial Workshop

=<

Testing DB apps with QC 6/23



Business Rules

Where are they?

APPLICATION INTERFACE

=

APPLICATION BUSINESS LOGIC

constraints

~

no

at all

only basic
constraints STORAGE ACCESS |
(E/R) I

Erlang User Conference (2010)

Tutorial Workshop

=<

Testing DB apps with QC 6/23



Business Rules

Where are they?

APPLICATION INTERFACE

STORAGE ACCESS

o < =
S

-

= X
-

'

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 6/23



Business Rules

When do we test them?

Since business rules are not located in a specific unit or component,

@ they are not covered by unit testing.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 7/23



Business Rules

When do we test them?

Since business rules are not located in a specific unit or component,
@ they are not covered by unit testing.

Since business rules dictate data-related constraints,

@ they are not the scope of integration testing.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 7/23



Business Rules

When do we test them?

Since business rules are not located in a specific unit or component,
@ they are not covered by unit testing.

Since business rules dictate data-related constraints,
@ they are not the scope of integration testing.
Since business rules need to be respected at all times,

@ they are not considered when testing the GUI.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 7/23



Business Rules

When do we test them?

Since business rules are not located in a specific unit or component,
@ they are not covered by unit testing.

Since business rules dictate data-related constraints,
@ they are not the scope of integration testing.
Since business rules need to be respected at all times,

@ they are not considered when testing the GUI.

Business rules must be tested as part of system testing. |

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 7/23



Why do DB applications require special testing?

Because of Business Rules

Therefore, database or data-intensive applications:
@ include business rules that put constraints on the data they handle,
@ business rules must be enforced by the system at all times,

@ location of the business rules is unclear.

=<

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 8/23



Why do DB applications require special testing?

Because of Business Rules

Therefore, database or data-intensive applications:
@ include business rules that put constraints on the data they handle,
@ business rules must be enforced by the system at all times,
@ location of the business rules is unclear.

In this tutorial, we will present a methodology to

test business rules at system testing level.

4

=

—
Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 8/23



The theory

How to test business rules with QuickCheck

To test that a data-intensive application complies with the data constraints

imposed by its business rules at all times, we use QuickCheck:

@ an automatic testing tool,
@ generates and runs random sequences of test cases,

@ when an error is found, test sequence is shrunk to return a minimal

test case.

=
Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 9/23



The theory

How to test business rules with QuickCheck

To test that a data-intensive application complies with the data constraints

imposed by its business rules at all times, we use QuickCheck:

@ an automatic testing tool,
@ generates and runs random sequences of test cases,

@ when an error is found, test sequence is shrunk to return a minimal

test case.
In the rest of the tutorial we assume familiarity with Quviq QuickCheck testing
Q tool. We will present the basics of how QuickCheck state machine library

works, but explaining these concepts is not the purpose of this specific tutorial.

S <

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 9/23



The theory

How to test business rules with QuickCheck

| APPLICATION INTERFACE

APPLICATION BUSINESS LOGIC

| STORAGE ACCESS

— (m— ([ —
——— (— (—

Erlang User Conference (2010) Tutorial Workshop

=<

Testing DB apps with QC 10/23



The theory

How to test business rules with QuickCheck

|

APPLICATION INTERFACE

BR

enforced

here
(

APPLICATION BUSINESS LOGIC

STORAGE ACCESS

Erlang User Conference (2010)

— (m— ([ —
——— (— (—

Tutorial Workshop

=<

Testing DB apps with QC 10/23



The theory

How to test business rules wit

h QuickCheck

APPLICATION INTERFACE

APPLICATION BUSINESS LOGIC

I I or here
| STORAGE ACCESS data will be
I "corrupted"
— —— —
— — —

Erlang User Conference (2010)

Tutorial Workshop

Testing DB apps with QC

=<

10/23



The theory

How to test business rules with QuickCheck

/
/
[
: APPLICATION BUSINESS LOGIC
\
\
\
STORAGE ACCESS
\_—J_‘\_—n_\_—i‘
=

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 10/23



The theory

QuickCheck state machine library

In particular, we use QuickCheck state machine library:

@ mechanism to easily implement a testing state machine

(library callbacks),
@ the testing state machine generates and runs test sequences,

@ tests are sequences of calls to the functionalities under test.

=<

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 11/23



The theory

How are test sequences generated?

test sequence

length reached?

l YES

FALS

NO
select SUCCESS
operation
preconditions hold?

TRUE

execute
operation

postconditions hold?

E

TRUE

Erlang User Conference (2010)

' FALSE
ERROR
=
Tutorial Workshop Testing DB apps with QC 12/23



The theory

How are test sequences generated?

test sequence

length reached?

l YES

FALS

NO
select SUCCESS
operation
preconditions hold?

TRUE

execute
operation

postconditions hold?

E

TRUE

Erlang User Conference (2010)

' FALSE
ERROR
=
Tutorial Workshop Testing DB apps with QC 12/23



The theory

How are test sequences generated?

test sequence

length reached?

l YES

FALS

NO
select SUCCESS
operation
preconditions hold?

TRUE

execute
operation

postconditions hold?

E

TRUE

Erlang User Conference (2010)

' FALSE
ERROR
=
Tutorial Workshop Testing DB apps with QC 12/23



The theory

How are test sequences generated?

test sequence

length reached?

l YES

FALS

NO
select SUCCESS
operation
preconditions hold?

TRUE

execute
operation

postconditions hold?

E

TRUE

Erlang User Conference (2010)

' FALSE
ERROR
=
Tutorial Workshop Testing DB apps with QC 12/23



The theory

How are test sequences generated?

test sequence

length reached?

l YES

FALS

NO
select SUCCESS
operation
preconditions hold?

TRUE

execute
operation

postconditions hold?

E

TRUE

Erlang User Conference (2010)

' FALSE
ERROR
=
Tutorial Workshop Testing DB apps with QC 12/23



The theory

How are test sequences generated?

test sequence

length reached?

l YES

FALS

NO
select SUCCESS
operation
preconditions hold?

TRUE

execute
operation

postconditions hold?

E

TRUE

Erlang User Conference (2010)

' FALSE
ERROR
=
Tutorial Workshop Testing DB apps with QC 12/23



The theory

How are test sequences generated?

test sequence

length reached?

l YES

FALS

NO
select SUCCESS
operation
preconditions hold?

TRUE

execute
operation

postconditions hold?

E

TRUE

Erlang User Conference (2010)

' FALSE
ERROR
=
Tutorial Workshop Testing DB apps with QC 12/23



The theory

QuickCheck statem machine skeleton

V) -module (test_eqc) .

—include_lib("eqc/include/eqc.hrl").
—include_lib("eqc/include/eqc_statem.hrl") .
—compile (export_all) .
—-record (state, {useful_info}).
%% Initialize the state
initial_state() ->

#state{useful_info = []}.

%% Command generator, S is the state
command (S) ->
oneof ([ PUBLIC API OPERATIONS ]).

%% Next state transformation, S is the current state
next_state(S,_V,{call,_,_,_}) —->
S.

%% Precondition, checked before command is added to the command sequence
precondition(_S, {call,_,_,_}) —>
true.

%% Postcondition, checked after command has been evaluated
%% OBS: S is the state before next_state(S,_, <command>)
postcondition(_S, {call,_,_,_},_Res) ->

prop_statem() ->
?FORALL (Cmds, commands (?MODULE) ,

begin
{H,S,Res} = run_commands (?MODULE, Cmds) ,
?WHENFAIL (
io:format ("History: ~p~nState: ~p~nRes: ~p~n", [H,S,Res]),
Res == ok)
end) .

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 13/23



The practise

Testing a simple e-shop

Very simple online shop application:

Erlang User Conference (2010)

@ Register new customer

@ Add new product to shop
@ Add product to cart

@ Remove product from cart
@ Place order

@ Cancel order

=

Tutorial Workshop Testing DB apps with QC 14/23



The practise

UML model: main components

<<QuickCheck>>
simpleshop_eqc

<<use>

/
<<use>>
y use:

simpleshop_interface

+register_customer( Name : string ) : int

+new _product( ProductCode : int, Description : string, Price : i
+add_to_cart( CustomerID : int, ProductCode : int )
+remove_from_cart( CustomerID : int, ProductCode : int )

+cancel_order( CustomerID : int, OrderNumber : int )

+place_order( CustomerID : int, ShippingAddress : string ) : int

nt )

I
<<delegate>>

<<use>> T
/  <<use>>

<<use>>
simpleshop_business_| Ioglcl‘ - = =

<<use>>

<<use>>

<<use>>

Erlang User Conference (2010) Tutorial Workshop

Testing DB apps with QC

P <<delegate>>
mnesia_interface | — — 2 _
<<use>>’ |
Sruse ﬂ ______
- e
L

= X
.

15/23



The practise

E/R model: basic data constraints

1 N - =
CStatus >-{cuSTOMER [——O——— ORDER [-_ Total )

places

includes

PRODUCT
=

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 16/23

is shopping




The practise

Golden business rule

Example of business rule (complex data constraint).

@ ¢
e

= X
.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 17/23



The practise

Golden business rule

Example of business rule (complex data constraint).

Business rule
Only golden customers may

ﬁ purchase golden products.

= X
.

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 17/23



The practise

Golden business rule

Example of business rule (complex data constraint).
Business rule

Only golden customers may
—qF purchase golden products.
— ,
-

Business rules may be implemented in different ways. ..

=<

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 17/23



The practise

Golden business rule

Example of business rule (complex data constraint).
Business rule

Only golden customers may
: purchase golden products.
-

Business rules may be implemented in different ways. ..
... but we only care they actually are.

=<

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 17/23



The practise

Hands-on time!

@ Explore the simple e-shop implementation given,
@ inspect the simpleshop_eqc module stub,

@ find out if business rule is respected!

.
=<

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 18/23



The practise

Hands-on time!

@ Explore the simple e-shop implementation given,
@ inspect the simpleshop_eqc module stub,

@ find out if business rule is respected! (and if not, fix it!!)

.
=<

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 18/23



The practise

Outcome: QuickCheck statem machine skeleton for BR testing (l)

-module (testbr_eqc) .

—include_lib("eqc/include/eqc.hrl").
—include_lib ("eqc/include/eqc_statem.hrl").

—compile (export_all) .

—-record(state, {useful_infol}).

initial_state() ->
#state{useful_info = []}.

command (S) ->
oneof ([ PUBLIC API OPERATIONS (LOCAL WRAPPERS) ]).

next_state(S,_V,{call, ,_,_}) —>
S.

precondition(_S, {call, _,_,_}) —>
true.

postcondition(_S, {call,_,_,_},_Res) ->
true.

prop_brstatem() ->
?FORALL (Cmds, commands (?MODULE) ,
begin
true = check_data_invariant(),
{H, S, Res} = run_commands (?MODULE, Cmds),
Invariant = check_data_invariant(),
clean_up(S),
?WHENFAIL (io:format ("H ~p~nS ~p~nRes ~p~n", [H, S, Res]),
conjunction([{test_execution, Res == ,
{business_rules, Invariant}]))
end) .

=<

User Conference (2010) Tutorial Workshop Testing DB apps with QC 19/23



The practise

Outcome: QuickCheck statem machine skeleton for BR testing (& II)

<command>_local (Args) ->
Expected = expected_result (<command>, Args),

V) Obtained = <command> (Args),
match (Expected, Obtained).
check_data_invariant () ->

IMPLEMENTATION OF BUSINESS RULES AS STORAGE QUERIES.

expected result (<command>, Args) ->
QUERY STORAGE TO GUESS RESULT.

clean_up(S) ->
EMPTY STATE BETWEEN TEST SEQUENCES.

=<

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 20/23



Summing up

Testing of data-intensive applications

When testing database or data-intensive applications,
@ special attention must be paid to data-consistency business rules,
@ data-consistency constraints cannot always be trusted to the data
storage and can never be trusted to the user interface,
@ business rules implementation may be spread over the system,

@ system testing is the most adequate level to test for business rules

compliance.

=<

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 21/23



Summing up
Methodology to test BR using QuickCheck

@ Use a QuickCheck state machine,

©Q keep state minimum,

© add public API operations as commands/transitions,
» use local wrappers to predict the result according to existing data,
» and then match with the result actually obtained

© specify pre- and postconditions as true,

@ formulate business rules (invariants) as queries to data storage,

O write property checking invariants after each test sequence. P

L o

—
Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 22/23



Summing up

| hope this tutorial has been useful!

Attendants ! thanks

Get help subscribing to: quickcheck-questions@quviq.com
Material for images came from: openclipart.org, kde-look.org

=

Erlang User Conference (2010) Tutorial Workshop Testing DB apps with QC 23/23



	What is a database application?
	Why do DB applications require special testing?
	Business Rules

	The theory: how to test a database application with QuickCheck
	The practise: testing a simple e-shop
	Summing up

