
The Erlang Rationale

Robert Virding

© 2010 Erlang Solutions Ltd. The Erlang Rationale 2

A Rationale

Rationale – n. 1. Fundamental reasons; the basis. 2.
An exposition of principles or reasons.

Why would we want one?
•  Help users understand how/why to use various

features
•  Help language designers
•  Help implementors
•  Help people wishing to extend language

First Principles
•  Lightweight concurrency

Must handle a large number of processes; process creation, context
switching and inter-process communication must be cheap and fast.

•  Asynchronous communication
•  Process isolation

What happens in one process must not affect any other process.

•  Error handling
The system must be able to detect and handle errors.

•  Continuous evolution of the system
We want to upgrade the system while running and with no loss of service.

© 2010 Erlang Solutions Ltd. 3 The Erlang Rationale

First Principles

Also
•  High level language to get real benefits.
•  The language should be simple

Simple in the sense that there should be a small number of basic
principles, if these are right then the language will be powerful but easy
to comprehend and use. Small is good.

The language should be simple to understand and program.

•  Provide tools for building systems, not solutions
We would provide the basic operations needed for building communication

protocols and error handling.

© 2010 Erlang Solutions Ltd. 4 The Erlang Rationale

Trivial Code Example
ringing_a_side(Addr, B_Pid, B_Addr) ->
 receive
 on_hook ->
 B_Pid ! cleared,
 tele_os:stop_tone(Addr),
 idle(Addr);
 answered ->
 tele_os:stop_tone(Addr),
 tele_os:connect(Addr, B_Addr),
 speech(Addr, B_Pid, B_Addr);
 {seize,Pid} ->
 Pid ! rejected,
 ringing_a_side(Addr, B_Pid, B_Addr);
 _ ->
 ringing_a_side(Addr, B_Pid, B_Addr)
 end.

© 2010 Erlang Solutions Ltd. The Erlang Rationale 5

Trivial Code Example
ringing_b_side(Addr, A_Pid) ->
 receive
 cleared ->
 tele_os:stop_ring(Addr),
 idle(Addr);
 off_hook ->
 tele_os:stop_ring(Addr),
 A_Pid ! answered,
 speech(Addr, A_Pid, not_used);
 {seize,Pid} ->
 Pid ! rejected,
 ringing_b_side(Addr, A_Pid);
 _ ->
 ringing_b_side(Addr, A_Pid)
 end.

© 2010 Erlang Solutions Ltd. The Erlang Rationale 6

Erlang “things”

Only two basic types of things in Erlang

•  Immutable data structures
Normal Erlang terms

•  Processes
Everything with internal state

Yes, the process dictionary is a mutable data
structure (sort of), but we never really liked it!

© 2010 Erlang Solutions Ltd. The Erlang Rationale 7

Processes

A process is something which obeys process
semantics:
•  Parallel independent execution
•  Communicates through asynchronous message

passing
•  Links/monitors for error detection/handling
•  Obey/transmit exit signals

N.B. Implementation and internal details
irrelevant!

© 2010 Erlang Solutions Ltd. The Erlang Rationale 8

Processes

•  Everything is run within a process
•  All processes are equal – no special or system

processes
•  No process hierarchy – flat process space

© 2010 Erlang Solutions Ltd. The Erlang Rationale 9

Process communication

All process communication by messages
All process communication asynchronous

Process BIFs asynchronous
•  Only check arguments
•  One exception then: sending to registered name!

Works the same with distribution!

© 2010 Erlang Solutions Ltd. The Erlang Rationale 10

Ports

”Processes” for communicating with the outside
world

Obey process semantics
•  Message based interface
•  Obeys links and exit signals
•  Fits in with rest of erlang

Ports talk to hardware
Ports need connected process to communicate

with.
© 2010 Erlang Solutions Ltd. The Erlang Rationale 11

Error handling

Errors will ALWAYS occur!

© 2010 Erlang Solutions Ltd. The Erlang Rationale 12

Error handling

•  Robust systems must always be aware of
errors

•  Want to avoid writing error checking code
everywhere

•  Want to be able to handle process crashes
among cooperating processes

•  System must detect, contain and handle errors
•  Interact well with process communication
© 2010 Erlang Solutions Ltd. The Erlang Rationale 13

Error handling

We just want to

Let it crash!

© 2010 Erlang Solutions Ltd. The Erlang Rationale 14

Error handling

Process based
If one process crashes then all should crash

Cooperating processes are linked together
Process crashes propagate along links

”System” processes can monitor them and
restart them when necessary

But sometimes we do need to handle errors
locally

© 2010 Erlang Solutions Ltd. The Erlang Rationale 15

Modules, code and code
loading

•  Only compiled code
•  Module is both the unit of compilation and of all

code handling
•  Relatively efficient compilation
•  More consistent system when loading code

•  Multiple versions of a module
No inter-module dependencies

© 2010 Erlang Solutions Ltd. The Erlang Rationale 16

Modules, code and code
loading

•  All functions belong to a module
•  All modules are equal – no system or special
•  No module hierarchy – flat module space

© 2010 Erlang Solutions Ltd. The Erlang Rationale 17

Things missing in early
Erlang

•  Code handling
•  Binaries
•  ETS
•  Funs
•  OTP

•  NIFs

© 2010 Erlang Solutions Ltd. The Erlang Rationale 18

Distribution

•  Based on loosely coupled nodes – like
processes

•  Completely transparent if desired (almost true)
•  Easier with asynchronous communication, so

keep communication and error handling
asynchronous

© 2010 Erlang Solutions Ltd. The Erlang Rationale 19

OTP
(Open Telecoms Platform)

Erlang just a language, for building large scale
applications you need:

•  A large set of standard libraries
•  A set of rules and design patterns for building

robust systems
•  Generic behaviours

•  And patterns for building new behaviours
•  Tools
© 2010 Erlang Solutions Ltd. The Erlang Rationale 20

OTP
(Open Telecoms Platform)

An application, its supervision tree and its workers
•  Supervisors ensure robust system by restarting workers

© 2010 Erlang Solutions Ltd. The Erlang Rationale 21

Application
Supervisors

Workers

© 2010 Erlang Solutions Ltd. The Erlang Rationale 22

Robert Virding: robert.virding@erlang-solutions.com

