
Erlang, the big switch in
social games

Paolo Negri @hungryblank

About this talk

Erlang adoption @

how we did it

and what we found

Social Games

• Run in the browser

• Published on social networks

• Popularity measured in millions of daily
users

Social Games
Flash client (game) HTTP API

Social Games
Flash client

• Game actions need to be
persisted and validated

• 1 API call every 2 secs

Social Games
HTTP API

• @ 1 000 000 daily users

• 5000 HTTP reqs/sec

• more than 90% writes

Social Games @wooga

• up to 1 300 000 daily users on a single game

• team of 2 people

• develop from scratch

• AND do deployments + live operations

• Releasing on weekly schedule

HTTP API

The hard nut

http://www.flickr.com/photos/mukluk/315409445/

The hard nut

60K queries/sec

Read/Write ~ 1

@ 1mln daily users your SQL /
NOSQL data layer is the main technical
challenge

The hard nut roots

• very easy to scale (add one more)

• easy to develop

• Plenty of ready frameworks

Stateless app servers

The hard nut roots

• high pressure on data layer

• extreme query/req optimization
means heavy refactoring

• query/req of 2 best possible ratio

Stateless app servers

The case for erlang

“A gaming session is a stream of close
requests altering repeatedly the same
game state”

The case for erlang

“What about application servers that
understand and represent efficiently the
concept of a gaming session?”

The case for erlang
“Which language or framework for:”

• Long lived state

• Safe handling of a multitude of independent,
different states

• All the above on a big cluster of machines

The case for erlang

• gen_server, gen_fsm good approach to state
handling

• Processes are very good at isolating failures

• clustering is a concept in the language itself

Pitching the idea
“This architecture let us leverage factors
we can’t currently leverage in order to
solve the scaling challenge”

“By the way erlang seems to be a very
good match for this architecture”

Pitch won!

• Develop proof of concept

• Hire 1 developer with erlang experience

• Go on and develop the backend for our new
game

Works?

CTO says:

Pitch won!

• Develop proof of concept

• Hire 1 developer with erlang experience

• Go on and develop the backend for our new
game

Works?

CTO says:

Yes!

How to hire erlang devs?

http://www.flickr.com/photos/legofenris/4499417549

Hiring

• mailing list

• Linkedin

• No agents

• No paid ads

Hiring

• 2 months

• Handful of applications with the right skills

• Hired one dev

Hiring

“I’m really experienced in _something
else_ but I would like to learn and work
with erlang”

We also got quite a few...

From people that are *good* for real

With

How to

http://www.flickr.com/photos/jakeandlindsay/5524669257/

getting started

Nice books around

getting started

http://www.erlang.org/doc

keytake(Key, N, TupleList1) -> {value, Tuple, TupleList2} | false

Types:

Key = term()
N = 1..tuple_size(Tuple)
TupleList1 = TupleList2 = [Tuple]
Tuple = tuple()

Docs are complete, well written but
sometime missing examples

getting started

gen_server, gen_tcp, gen_*

Very well documented and awesome by
default

getting started

The rest of OTP was black magic and
foggy until the book was published

Still official howtos and complete docs
would be nice to have

Learn you some erlang[1]

• Hands on book

• Plenty of small examples

• Written with the beginners in mind

[1] http://learnyousomeerlang.com

getting started

Erlang tools

we’re using
http://www.flickr.com/photos/loonatic/3871627355

tools we’re using

• Dependency management

• Eunit integration

• Release packaging

• Enforces OTP standard

rebar

https://github.com/basho/rebar

tools we’re using

• not tested =:= not done

• Eunit is a complete unit testing framework

• No guidelines/tools for testing gen_servers

eunit

http://www.erlang.org/doc/apps/eunit/chapter.html

tools we’re using

• mocking framework

• Mock all module or nothing

• Works, but very limited

erlymock

https://github.com/nialscorva/erlymock

tools we’re using

• library for building lightweight HTTP servers

• Tiny amount of code

• Performs well

• Good match for minimalist REST API

misultin

https://github.com/ostinelli/misultin

tools we’re using

• Extended process registry for Erlang

• Used to map active users/sessions -> pids

• Works fine at 100K processes/node

• We use it only in local (single node) mode

gproc

https://github.com/esl/gproc

tools we’re using

• Multi protocol (HTTP, XMPP) benchmarking tool

• Synthetic load only way to “scale proof” new project

• Able to test non trivial call sequences

• Can actually simulate game play

tsung

http://tsung.erlang-projects.org/

tools we’re using

• Generates ~ 2500 reqs/sec on AWS m1.large

• Flexible but hard to extend

• Code base rather obscure, not hosted on github

tsung

http://tsung.erlang-projects.org/

Erlang
brought
with it few
benefits we
weren’t
explicitly
looking
for...

Freebies

handle_call(Request, From, State) ->

 NewState = mylib:myfun(State),

 {reply, ok, NewState};

Immutability -> last sane state is always known and
easily available

Transactions

Freebies

Transactions

• Immutability (erlang)

• Functional approach (erlang)

• Careful persistency side effects handling (you)

Freebies

Decoupling

HTTP

Application Logic

Persistency/DB

Freebies

Decoupling

• Switching from HTTP to sockets would take a day

• Changing persistency solution would take a day
(data migration excluded)

• Both changes would leave application logic
untouched

Freebies

Test a cluster on a box

• Multiple erlang nodes on a single machine

• Continuous integration for clustering logic!

• End to end test on a single box

Freebies

New point of view

• From the erlang point of view problems look
different

• Approaches used in this project were ported to
ruby projects

• Erlang makes for a good thinking exsercise

What we

of

what we like

Low level runtime infos

• erlang:statistics

• erlang:system_monitor

• erlang:process_info

what we like

Performance tweaks

• Efficiency guide[1]

• Control on initial process heap

• Garbage collection can be measured

[1] http://www.erlang.org/doc/efficiency_guide/introduction.html

what we like

“erlang-questions” mailing list

• Very active and responsive

• “Big guns” open to help

• Threads go in depth on interesting topics

what we like

Github

• Thanks for sharing your code on github!

• Lots of answers to “how is that done?”

• Growing collection of erlang libs

what we like

Github Tags Appeal

Please use tags on your github projects...

So we can bind rebar deps to a tag...

git push --tags

works well with erlang...

http://www.flickr.com/photos/legofenris/4563478042

works well with

Rake!

• Integration test tasks

• Continuous integration setup/teardown

• Other tasks specific to the project

works well with

Ruby test frameworks

• Flexible assertions

• Rapid modeling of API

• Low maintenance overhead

• Easy fixturing/mocking

works well with

Redis

“An open source, advanced key-value store”

• In memory key value store

• Optional on disk persistency

• Optional replication

works well with

Redis

Binary safe protocol

+
Binary safe datatypes

works well with

Redis

200K ops/sec on a single thread

Serialization?

term_to_binary/1

binary_to_term/1

works well with

Cloud (AWS)

• Erlang understands clustering out of the box

• Nodes joining/leaving handling

• Async I/O to compensate high latency

• Cloud works better if you’re parallel

We’re missing...

we’re missing

HashMaps

user[:inventory][:food][:apples]

=> 1

User#user{inventory = Inventory}

...

we’re missing

packages à la CPAN
rubygems...

we’re missing

also...
github is great but which

one of 5 forks is the
“authoritative” one?

we’re missing

will agner
A Giant Nebula of Erlang

Repositories be the
answer?

http://erlagner.org

we’re missing

Live environment performance
monitoring S.A.S.

ruby/java/php
have http://newrelic.com

erlang?

how is it going?

• On time so far

• Benchmarks look good

• Stay tuned... launch date approaching!

Thanks!

http://www.wooga.com/jobs

paolo.negri@wooga.com

@hungryblank

