
04/04/2011 12:06slides.html.xhtml

Page 1 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Bunfight at the language corral

Laziness, strong types, and library design

Bryan O'Sullivan

04/04/2011 12:06slides.html.xhtml

Page 2 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Lean startups for old farts

Approximate definition of a "lean startup"?

Achieve the impossible on a negligible budget

An immersive way to spend a few years of your early 20s

But what if you're a bit older, have an established life, and still feel that
itch?

(Assumption: you want to sustain some sort of life)

04/04/2011 12:06slides.html.xhtml

Page 3 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Architectures of least surprise

The last thing you want during a hard evening building cushion forts with
the kids?

TYPE: Cannot access database on mysql.example.com HOST:appl3 STATE:CRITICAL

A small company has proportionally more need of robust services than a
large one...

... because it's always you in harm's way

04/04/2011 12:06slides.html.xhtml

Page 4 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Making choices

Want a reliable, low-maintenance architecture?

This has pervasive consequences, from the ground up

04/04/2011 12:06slides.html.xhtml

Page 5 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Reliable storage

We have the typical love/hate relationship with MySQL

On the one hand, it's fast and pretty reliable

On the other, it's complicated to keep it both healthy and fast in a
somewhat unreliable shared hosting environment

Write master fails?

Read slaves fall behind?

EBS RAID volume vanishes?

You've got a long evening ahead

04/04/2011 12:06slides.html.xhtml

Page 6 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Avoiding single points of failure

There aren't many fault tolerant DB-like systems out there at a startup's
budget

Main contenders?

Cassandra

Voldemort

Riak

All three provide distributed, fault tolerant key/value storage

If something goes wrong, there's a fair chance you can deal with it the
next morning

04/04/2011 12:06slides.html.xhtml

Page 7 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Why choose Riak?

Compared to Cassandra and Voldemort, Riak is dramatically easier to
deal with on several fronts:

Initial learning curve

Casual programming (curl ftw!)

Once you get deeper, there are fewer truly significant differences, but
the ease of that initial getting-started period is /important/

04/04/2011 12:06slides.html.xhtml

Page 8 of 27file:///Users/aniko/Downloads/slides.html.xhtml

The next layer up the stack

Not surprisingly, our "business logic" is in Haskell

It's fast, compact, safe, easy to deploy, and has great libraries

These are very practical concerns, not rooted in some abstract
philosophy of purity

but those supposedly abstract notions have some lovely concrete benefits

04/04/2011 12:06slides.html.xhtml

Page 9 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Your toddler is right: sharing is
hard

One tricky aspect of data storage:

Concurrent updates to shared data

The traditional database approach:

Wrap it in a transaction

The distributed key/value store approach:

Use vector clocks to signal conflicts

04/04/2011 12:06slides.html.xhtml

Page 10 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Transactions

Think of transactions as like fire sprinklers

If you remember to use them, you get a high degree of automatic
protection

Under load, things can get distinctly soggy

04/04/2011 12:06slides.html.xhtml

Page 11 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Vector clocks

A vector clock tells you only that something is inconsistent in your data

Think of it as like a fire alarm

It's still your job to put the fire out!

04/04/2011 12:06slides.html.xhtml

Page 12 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Everything sucks

With transactions:

The performance model

With vector clocks:

The programming model

04/04/2011 12:06slides.html.xhtml

Page 13 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Easing the pain

So if we're choosing Riak, and we're clever, we must have some sort of
trick up our sleeves, right?

Well, sort of

04/04/2011 12:06slides.html.xhtml

Page 14 of 27file:///Users/aniko/Downloads/slides.html.xhtml

The Haskell Riak client library

A layered library, built by MailRank engineering (aka me)

At the lowest level, hammer away at the bare bones of Riak's APIs

At the highest level, write conflict resolution code once, and have it
work automatically forever after

04/04/2011 12:06slides.html.xhtml

Page 15 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Performance is important

Performance is a big deal to us

Riak's HTTP API is pleasant, but slow

It provides a much faster protocol buffers API

The Haskell client library uses protocol buffers

04/04/2011 12:06slides.html.xhtml

Page 16 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Yep, performance is important

The library is built around request pipelining

We've tested with thousands of requests in flight at once, with
responses being received while requests are still being sent

04/04/2011 12:06slides.html.xhtml

Page 17 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Correctness is also important

The high-level APIs automatically perform conflict resolution during
reads and writes

Conflict resolution is also pipelined, so in a truly demanding application,
you get to resolve many conflicts quickly, concurrently, and completely
automatically

04/04/2011 12:06slides.html.xhtml

Page 18 of 27file:///Users/aniko/Downloads/slides.html.xhtml

What is a conflict, anyway?

If you read the vector clock literature, you'll find out about partial
orderings, semilattices, and other algebraic terms that aren't very
enlightening (maybe unless you're a Haskeller)

Basically: when I say the thing named foo has value X, and you say it has
value Y, we have to come to an agreement about what its value really is

04/04/2011 12:06slides.html.xhtml

Page 19 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Conflict resolution in Haskell
class (Eq a, Show a) => Resolvable a where
 resolve :: a -> a -> a

What's this mean?

There's a class a of types for which I can call a resolve function

Given two conflicting values, resolve tells me what the "real" value
should be

04/04/2011 12:06slides.html.xhtml

Page 20 of 27file:///Users/aniko/Downloads/slides.html.xhtml

The typical salesman's example

The easiest example of conflict resolution is with a set of values

I think the set contains (1,2,3)

You say it contains (2,4,6)

An obvious way to resolve our conflict is to choose the union of our two
sets

(1,2,3,4,6)

We can easily express this in Haskell:

instance Resolvable (Set a) where
 resolve = union

04/04/2011 12:06slides.html.xhtml

Page 21 of 27file:///Users/aniko/Downloads/slides.html.xhtml

So...a salesman's example?

Conflict resolution looks easy, right?

If you pay attention, you'll find that people who talk about vector clocks
always choose something that looks like a set as their example (e.g. a
shopping cart)

Why is this? Shouldn't something like incrementing an integer be even
easier?

Nope---it's actually far harder

Conflict resolution is, in general, really tough

The folks who want to sell you on distributed key/value stores are rarely as quick as they
should be to admit this

04/04/2011 12:06slides.html.xhtml

Page 22 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Operational concerns

The overall story is indeed mixed

Yes, programming with distributed key/value stores is awkward

The ability to lose part of a cluster without it being a disaster is a big
deal

Performance and convenience are far lower than with MySQL

04/04/2011 12:06slides.html.xhtml

Page 23 of 27file:///Users/aniko/Downloads/slides.html.xhtml

What aspects of Haskell help us?

Performance

We can ship many tens of MB/sec of JSON around with a single CPU

Purity

The design of Haskell libraries makes it far easier to build important features like
pipelining and connection pooling

Static and dynamic assurance

Whole classes of bugs are eliminated

Features such as automatic conflict resolution are made safe and (relatively) easy

We can refactor quickly and with confidence

04/04/2011 12:06slides.html.xhtml

Page 24 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Static assurance: the type system

Encode knowledge about our data that is enforced by a theorem prover

"This data was provided by a user and cannot be trusted"

"This function never performs I/O of any kind"

Specify behaviour that we care about in easily reproduced ways

"for any type in the Resolvable class, I always know how to resolve conflicts"

04/04/2011 12:06slides.html.xhtml

Page 25 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Dynamic assurance: testability

The QuickCheck library, combined with the type system, makes testing
Haskell code a breeze

Here's how I generate arbitrary compressed data for testing with
Google's Snappy compression library:

instance Arbitrary (Compressed B.ByteString) where
 arbitrary = (Compressed . B.compress) <$> arbitrary

And here's how I ensure that a scatter-gather I/O vector of little chunks
always gets decompressed to the same result as a single buffer containing the
same compressed data, no matter what size the chunks are or what the data
is:

decompress_eq n (Compressed bs) =
 L.fromChunks [B.decompress bs] == L.decompress (rechunk n bs)

04/04/2011 12:06slides.html.xhtml

Page 26 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Get the code, get hacking

If you want to try this stuff out, get the easy-to-install Haskell Platform:
hackage.haskell.org/platform

All the code I've talked about is open source and installable with a single
command

Riak client

cabal install riak

Fast, easy JSON support (60MB/sec+)

cabal install aeson

Protocol buffers

cabal install protocol-buffers

Snappy (compress at 250 MB/sec, decompress at 500 MB/sec)

cabal install snappy

http://hackage.haskell.org/platform/
http://hackage.haskell.org/package/riak
http://hackage.haskell.org/package/aeson
http://hackage.haskell.org/package/protocol-buffers
http://hackage.haskell.org/package/snappy

04/04/2011 12:06slides.html.xhtml

Page 27 of 27file:///Users/aniko/Downloads/slides.html.xhtml

Thanks!

Want these slides? bitbucket.org/bos/erlang-factory-2011

I ramble on Twitter: @bos31337

https://bitbucket.org/bos/erlang-factory-2011
http://twitter.com/bos31337

