Erlang Solutions Ltd.

A History of the Erlang VM

Robert Virding

w © 1999-201 | Erlang Solutions Ltd.

Pre-history

. AXE programmed in PLEX
. PLEX

programming language
for exchanges

proprietary

blocks (processes) and
signals

in-service code upgrade = =
. Eri-Pascal ;

Fig. 11 AXE programming by PLEX

© 1999-201 | Erlang Solutions Ltd.

1985 - 1989

Timeline

Programming POTS/LOTS/DOTS (1885)

A Smalltalk model of POTS

A telephony algebra (math)

A Prolog interpreter for the telephony algebra
Added processes to prolog

Prolog is too powerful (backtracking)
Deterministic prolog with processes

“Erlang” 1 (1986)

Compiled to JAM code (1989)

© 1999-201 | Erlang Solutions Ltd.

The telephony algebra (1985)

idle(N) means subscriber N is idle

on(N) means subscriber N is on hook

+t(N, dial_tone) means add dial tone to A

process(A, f) :- on(A), idle(A), +t(A,dial_tone),
+d(A, []), -idle(A), +of(A)

Using this notation, POTS could be described using fifteen rules. There
was just one major problem: the notation only described how one
telephone call should proceed. How could we do this for thousands of

simultaneous calls?

é%/ © 1999-201 | Erlang Solutions Ltd.

The reduction machine

C,D.
D

’
’

We can interrupt this at any time

OO >

A,B,C, D = nonterminals

O

X,Y,z = terminals

O O o o OO0
(i w i e R W

- - - - - -

To reduce X,...Y...

If X is a nonterminal replace it by it's definition

A
B
X
D
y
C
Z
D
Y
1

-

If X is a terminal execute it and then do ...Y...

.

© 1999-201 | Erlang Solutions Ltd.

Term rewriting Is last-call optimised

one(XQ) —>
two (X1).

two(YQ) —>

one(Y1).

© 1999-201 | Erlang Solutions Ltd.

erlang vsn 1.05

h help

(Preset reset all queues
reset_erlang kill all erlang definitions
load(F) load erlang file <F>.erlang
load load the same file as before
load(?) what is the current load file
what_erlang list all loaded erlang files
go reduce the main queue to zero
send(A,B,CO) perform a send to the main queue
send(A,B) perform a send to the main queue
cq see queue - print main queue
wait_queue(N) print wait queue(N)
cf see frozen - print all frozen states
eqns see all equations
eqn(N) see equation(NN)

start(Mod,Goal) starts Goal in Mod T h e m a n u a I

top top loop run system

q quit top loop

open_dots(Node) opens Node] 98 5 (Or 86)
talk(N) N=1 verbose, =0 silent

peep(M) set peeping point on M

no_peep(M) unset peeping point on M

vsn(X) erlang vsn number is X

joe> cat test.erlang listing of program
module(test).

I start --> write('hello"),nl,go.

2: go --> start_proc(fool,test,test),start _proc(foo2,test,test).
3: test --> wait.

4: wait,[X,1].
5: wait,[X,Y] --> write(received(Y)),nl,wait.

joe> erlang start erlang Ru n n i n g a

erlang vsn 1.05

type h for help prOg Fram

yes

| 7- load(test). load the program in test.erlang
translating the file:test.erlang

Module:test

12345 equantion numbers are displayed
compiling the file:test.obj

[/u/joe/logic/quintus/erlang/dots/test.obj compiled (1.950 sec 480 bytes)]
loading completed ...

The prolog interpreter (1986)

Fackage: make erlang

Author : Joseph Armstrong

Updated: 1986~12~18

Purpose: compiles and loads the erlang system

this line MUST come first -
= ensure_loaded(/u/joe/logic/quintus/1ib/set_library.pl’). ersion 1.
108t in the mists of time
added modules and peeping (removed tracing) datEd] 986-] 2-] 8
mean version - fails in top loop LO conserve space

added process constants
added commands
gstart proc(Id,Module,Goal, Process constants)

is similar to start proc/3 with added - -
Earlier versions

Frocess_constants are a list of pairs of the form
[{Key,Val), (Keyl,Vall),...!

L - -
pl'fL__l'A.'-'.f ::’:‘.":'..I.Sl) “I t th t
lOooks up the value of the process constant OS I n e I l l I S S

With kxey Key - Binds result to Value or makes
error messages -)
added table driven number analyser Of tl me
anal (Seq,Res)
given a dialled sequence Seqg binds Res
to one of [invalid,get more digits, matched(Reason)!

»

S A A U U U R

énsure loaded(library(prims)).
ensure_loaded(library(findall)),

= ensure loaded(’erlangl.0q4r’).
i= ensure loaded(run).

1= @nsure loaded(queue)

= eénsure loaded(reduce).

i~ ensure_loaded(resume).

:= ensure_loaded(timeout) .

LI A ..

© 1999-201 | Erlang Solutions Ltd.

Phoning philosophers

7. A Telephone Exchange Model in PARLOG state is an unbound variable which is bound 0 a

: the Manager process activation as follows:
Our exchange is modelled, in Parleg, os & set of value in

t arallel logic processes, as To_M
fll;::;.x:‘r:?.:;‘n;\n‘thep ﬂg\.;e below. Communication monlgerllcntl_(oflccmj.slou) To_M),
between logic processes takes place through From_M) :- :
unidirectional channels. A channel is represented by get_state(R),state), ...
an infinite stream of messages

in whach the varisble State gets a value to be bound

in the caller_process commumnicatin with the
monager. This example is simplified a bat for
illustration purposes. In the real program there
are extra merging and forking processes to control
communication ofrom the manager.

An example of a time dependent process is the

hot-line service, The hot-line is a seTVice provided by
the exchange in which if & phone is puhed up, and of
po dialing has started within a given time, the
system automuatically dials a predefined number.
This process is described in Parlog s follows:

resource_processi(ii, loff_hook|From_s),
"’.:{-‘ i From M. Ta S Ta_M):-
- idlelRi) :
start_col(Ri, From.S, From.M, Rlarm,
stop.cmd, To_s, Te_M),

The telephone sets are represented by external timer{some_time, $top._cmd, Morm).

renrosese (Si's). ecach process (Si) communicates

The Phoning Philosopher's Problem or Logic Programming for .
Telecommunications Applications

Armstrong, Elshiewy, Virding (1986)

w © 1999-201 1 Erlang Solutions Ltd.

1988 - Interpreted Erlang

B II6
12:44:20

4 days for a compiler
rewrite
245 reductions/sec

semantics of language
worked out

Robert Virding joins
the “team”

© 1999-201 | Erlang Solutions Ltd.

erlang.pl

1989 - The need for speed

« ACS - Dunder

‘we like the language but it’s too slow”
must be 40 times faster

engine.pl

. Mike Williams writes the
emulator (in C)

. Joe Armstrong writes the
compiler

. Robert Virding writes the

libraries

w © 1999-201 | Erlang Solutions Ltd.

How does the JAM work? (1)

. JAM has three global data areas
code space + atom table + scheduler queue
. Each process has a stack and a heap

- fast context switching
- non-disruptive garbage collection

. Erlang data structures are represented as tagged
pointers on the stack and heap

© 1999-201 | Erlang Solutions Ltd.

Atoms: example 'abc'
Atom table

< 3

abc

Integers: example 42

| 42 (’

Tuples: {abc,42,{10,foo}}

T

Tagged Pointers

w © 1999-201 | Erlang Solutions Ltd.

How does the JAM work? (2)

. Compile code into sequences of instructions that
manipulate data structures stored on the stack

and heap (Joe)

. Write code loader, scheduler and garbage
collector (Mike)

« Write libraries (Robert)

© 1999-201 | Erlang Solutions Ltd.

Factorial

rule(fac, @) -> [pop,{push,1}]; sfac(0) — 1,
rule(fac, _) —-> I[dup,{push,1},minus,{call, fac},times]. %fac(N) —> N x fac(N-1).

run() —> reduce@([{call,fac}], [3]).

reduce@(Code, Stack) —>
io:format("Stack:~p Code:~p~n", [Stack,Codel),
reduce(Code, Stack).

reduce([], [X]) X;
reduce([{push,N}|Code], T) reduce@(Code,
reduce([pop|Code]l, [_|TI]) reduce0@(Code,
reduce([dup|Code], [H|T]) reduce0@(Code,
reduce([minus|Codel, [A,B]|T]) reduce@(Code,
reduce([times|Codel, [A,B]|TI]) reduce@(Code,
reduce([{call,Func}|Code]l, [H|_]=Stack) —>
reduce@(rule(Func, H) ++ Code, Stack).

@%/ © 1999-201 | Erlang Solutions Ltd.

Factorial

> fac:

Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:
Stack:

ol

run().

[3] Code: [{call, fac}]

[3] Code: [dup,{push,1},minus,{call, fac}, times]

[3,3] Code: [{push,1},minus,{call, fac}, times]

[1,3,3] Code:[minus,{call, fac},times]

[2,3] Code: [{call, fac}, times]

[2,3] Code: [dup,{push,1},minus,{call, fac},times,times]
[2,2,3] Code: [{push,1},minus,{call, fac},times,times]
[1,2,2,3] Code:[minus,{call, fac},times, times]

[1,2,3] Code:[{call, fac}, times,times]

[1,2,3] Code: [dup,{push,1},minus,{call, fac},times,times, times]
[1,1,2,3] Code: [{push,1},minus,{call, fac},times,times, times]
[1,1,1,2,3] Code:[minus,{call, fac},times,times, times]
[0,1,2,3] Code:[{call, fac},times,times,times]

[0,1,2,3] Code: [pop,{push,1},times,times,times]

[1,2,3] Code: [{push,1},times,times,times]

[1,1,2,3] Code: [times,times,times]

[1,2,3] Code:[times,times]

[2,3] Code: [times]

[6] Code:[]

© 1999-201 | Erlang Solutions Ltd.

An early JAM compiler (1989)

fac(0) — 1;

fac(N) —> N x fac(N-1).
(N) () {info, fac,1}

{try_me_else, labell}
{arg,0}
rule(fac, 0) —> {getInt, 0}

[pop, {push,1}]; {pushInt, 1}

ret
rule(fac, _) — try_me_else_fail

[dup, {arg, 0}

{push, 1}, dup

minus, {pushInt,l}
M1INUS

{§a11,fac}, {callLocal, fac,1}
times]. times

ret

© 1999-201 | Erlang Solutions Ltd.

Compiling foo() -> {abc,10}. (1)

{enter, foo,2}
{pushAtom, “abc”}
{pushInt, 10},
{mkTuple, 2},

ret

pC = program counter
stop = stack top
htop = heap top

Byte code

16,10, 20,2

switch (kpc++){
case 16: // push short int
xstop++ = mkint (kpc++);

break;

case 20: // mktuple
arity = *xpc++;
xhtop++ = mkarity(arity);
while(arity>0){
xhtop++ = xstop——;
arity——;

&

break:

© 1999-201 | Erlang Solutions Ltd.

foo() -> {abc, 10}.

pushAtom abc

a

/

L

pushint, 10

10

a

mkTuple, 2

Atom table

3

=[5+
/

T

A 2/
a

i 10

© 1999-201 | Erlang Solutions Ltd.

An early JAM compiler (1989)

sys_sys.erl
sys_parse.erl
sys_ari_parser.erl
sys_build.erl
sys_match.erl
sys_compile.erl
sys_lists.erl
sys_dictionary.erl
sys_utils.erl
sys_asm.erl
sys_tokenise.erl
sys_parser_tools.erl
sys_load.erl
sys_opcodes.erl
sys_pp.erl
sys_scan.erl
sys_boot.erl
sys_kernel.erl

18 files

85
82
71
419
413
96
326
128
418
252

dummy

erlang parser

parse arithmetic expressions
build function call arguments
match function head arguments
compiler main program

list handling

dictionary handler

utilities

assembler

tokeniser

parser utilities

loader

opcode definitions

pretty printer

scanner

59 bootstrap

9
4544

kernel calls

Like the WAM with added primitives for spawning processes and message passing

6

© 1999-201 | Erlang Solutions Ltd.

JAM improvements

Unnecessary stack -> heap movements
Better with a register machine

Convert to register machine by emulating top N
stack locations with registers

And a lot more ...

© 1999-201 | Erlang Solutions Ltd.

Alternate implementations

VEE (Virdings Erlang Engine)
. Experiment with different memory model

- Single shared heap with real-time garbage collector
(reference counting)

. Blindingly fast message passing

BUT

. Small overall speed gain and more complex
internals

@%/ © 1999-201 | Erlang Solutions Ltd.

Alternate implementations

Strand88 machine

An experiment using another HLL as "assembler”
Strand88 a concurrent logic language

- every reduction a process and messages as cheap as
lists

Problem was to restrict parallelism

BUT

Strand's concurrency model was not good fit for
Erlang

(S% © 1999-201 | Erlang Solutions Ltd.

1985-1998

‘opennoee” > cocret " OPEN

e . . itrifation threat ‘war (Java))

i o] WAR (C++ i)

" Poaco)

‘[UDCﬁOMI” ‘h. ” ‘f‘ t "
. ,, ide languagp fime fo market ot .
Declarative & interopmhﬂitg” ‘|a,a,gggré

r————%)Dictrib tion .,_Tyhn;)
*Tochnidue” L_.J_A_.M_/ﬁ } Vé.>> 5 Yo Ctandar LT
\ . = _Beam) >Hype > > Etlang Qf>
1 Prolog interpreter | yum.b m> S
Dak €6 €7 €€ €0 0 -OI 92 93 04 O 06 .07 .07

Agec St P
' — — P e e e
: | | Ivira ~

“Usae” 3 BO""'OI_,Q_ club ;anethmg-z = _MQB e | E_a_ 7
Ssmall | SALALN 2 Netgim > Concono

otuff 35, iy SDewmany ATM>

- 8

“marketing”

N

E Sl - 3

Dev ' 9 4
Ueore /// 1 10 40
Cupport 0,92 0,9 1,2

Etlang Cysterme>

© 1999-201 | Erlang Solutions Ltd.

By 1990 things
were going
so well

that we
could

© 1999-201 | Erlang Solutions Ltd.

Buy a train set

P -
.‘ 4
——

*',:31
o -

© 1999-201 | Erlang Solutions Ltd.

We added new stuff

 Distribution . Bit syntax
. Philosophy . Compiling pattern

« OTP structure matching

. HIPE » Documented way of doing
things
. Type Tools

© 1999-201 | Erlang Solutions Ltd.

TEAM

Turbo Erlang Abstract Machine

Bogumil Hausman

. Make a new efficient implementation of Erlang

Turbo Erlang: Approaching the Speed of C

(S% © 1999-201 | Erlang Solutions Ltd.

TEAM

- New machine design append 2:

Clause:

- Register machine TestlonEmptyList (x(0) ,next);

. Allocate(1);
. Generate native code by smart oeat

use Of GCC GetLi=t2(x(0),y(0),x(0));
Call(append 2,2);

« Same basic structures and
memory design as JAM TestHeap(2);

PutList2(x(0),y(0),x(0));
« Threaded emulator Deallocate(1);

Return:
ClauseEnd;

Clause:

append([H|T], X) —> [H|append(T, X); TestNil(x(0),next):

append([], X) — X. Move (x(1),x(0));
Return;

ClauseEnd;

ErrorAction(FunctionClause);

© 1999-201 | Erlang Solutions Ltd.

Compiling foo() -> {abc,10}. (2)

{enter, foo,2}
{pushAtom, “abc”}
{pushInt, 10}, —_—
{mkTuple, 2},

ret

pC = program counter
stop = stack top
htop = heap top

Byte code

16,10, 20,2

Threaded code
e

0x45620,10,0x45780, 2

static void xlables[] = {

&&pushInt,

&&mkTup le,

pushInt: // push short int
xstop++ = mkint(xpc++);
goto *xpcC++;

mkTuple: // mktuple
arity = xpc++;
xhtop++ = mkarity(arity);
while(arity>0){
xhtop++ = *xstop——;
arity——;
¥

goto *xpcC++;

© 1999-201 | Erlang Solutions Ltd.

TEAM

Significantly faster than the JAM
BUT

Module compilation slow

Code explosion, resultant code size too big for
customers

S0

Hybrid machine with both native code and
emulator

S © 1999-201 | Erlang Solutions Ltd.

TEAM --> BEAM

Bogdan’s Erlang Abstract Machine

And lots of improvements have been made and lots
of good stuff added

Better GC (generational), SMP, NIF’s etc. etc.
(now Bjorn’s Erlang abstract Machine)

© 1999-201 | Erlang Solutions Ltd.

Compiling pattern matching

. Erlang semantics say match clauses sequentially

BUT
. Don’t have to if you're smart!
. Can group patterns and save testing

The implementation of Functional Languages
Simon Peyton Jones
(old, from 1987, but still full of goodies)

(S% © 1999-201 | Erlang Solutions Ltd.

Compiling pattern matching

scanl([$\s
scanl([$\s
scanl([$\n
scanl([$\n

Cs], St,
Cs], St,
Cs], St,
Cs], St,

Line, Col, Toks) when St#erl scan.
Line, Col, Toks) —>
Line, Col, Toks) when St#erl scan.
Line, Col, Toks) —

scanl([C|Cs], St, Line, Col, Toks) when C >= $A, C =< $Z
scanl([C|Cs], St, Line, Col, Toks) when C >= $a, C =< $z
%% Optimisation: some very common punctuation characters:
scanl([$,|Cs]l, St, Line, Col, Toks) —>
scanl([$(|Cs], St, Line, Col, Toks) —>

© 1999-201 | Erlang Solutions Ltd.

Compiling pattern matching

expr({var,Line,V}, Vt, St) —
expr({char, _Line,_C}, _Vt, St) —
expr({integer,_Line,_I}, _Vt, St) —
expr({float, Line, F}, _Vt, St) —>
expr({atom,Line, I}, _Vt, St) —
expr({string,_Line,_S}, _Vt, St) —
Bexpr({nil,_Line}, _Vt, St) —->
expr({cons, Line,H, T}, Vt, St) —
expr({lc, _Line,E,Qs}, Vto, Sto) —>
expr({bc, Line,E,Qs}, Vto, Sto) —
Iexpr({tuple,_Line,Es}, Vt, St) —
lexpr({record_index,Line,Name,Field}, _Vt, St) —>
expr({bin, _Line,Fs}, Vt, St) —
expr({block, Line,Es}, Vt, St) —
expr({'if’,Line,cs}, Vt, St) —
Iexpr({’case’,Line,E,Cs}, Vt, Sto) —->

w © 1999-201 | Erlang Solutions Ltd.

The Erlang VM as an assembler

« Efene

- Mariano Guerra
- http://marianoguerra.com.ar/efene/

. LFE (Lisp Flavoured Erlang)

- Robert Virding
- http://github.com/rvirding/Ife

« Rela

- Tony Arcierli
- http://reia-lang.org/

w © 1999-201 | Erlang Solutions Ltd.

http://github.com/rvirding/lfe
http://github.com/rvirding/lfe
http://wiki.reia-lang.org/wiki/Reia_Programming_Language
http://wiki.reia-lang.org/wiki/Reia_Programming_Language

THE END

Robert Virding, Erlang Solutions Ltd.

robert.virding@erlang-solutions.com

© 1999-201 | Erlang Solutions Ltd.

