
OneTeam Media Server
2009, 30th april
Mickaël Rémond <mremond@process-one.net>

mailto:mremond@process-one.net
mailto:mremond@process-one.net

An Erlang company

ProcessOne: An Erlang company

20 people, most of them Erlang developers

Lots of Erlang Veterans (Two «Erlang User of the Year !»)

Focusing on software development and technology for which Erlang is a

good fit.

World wide customer base: We are spreading Erlang use all around the

world.

Main customers base:

Social networks

Carrier / Telco

Our customers worldwide~50 major customers
~45 millions of users

Software products: ejabberd

Instant messaging platform based on the open XMPP protocol.

Open source software. Lots of example of Erlang code.

Largely used in the world and usefull to convert developers to Erlang and
gain mind share.

About 40% market share of the public XMPP known domains.

Known for its clustering, scalability and hackability (easy to extend, live code
update)

Very large deployment in production

Require some know-how to reach large scale, but strongly supported solution
by ProcessOne

Very large development community

Software products: Tsung

Highly scalable benchmark tool: Can easily simulate lots of users on a cluster
(hundreds of thousands)

Many supported protocols:

HTTP/HTTPS

XMPP

Postgres

LDAP

...

Extensible: You can add new protocols.

Strong support by ProcessOne.

OneTeam Media Server

OneTeam Media Server

This is a Flash server, designed to develop connected Adobe Flash client
applications.
It can supports:

Networked web applications (like text chat system)
Voice
Video playback
Video recording
Video chat
Event distribution with publish and subscribe system
...

Perfect server for rich web real time applications.

OneTeam Media Server: Why Erlang ?

For scalability and flexibility

For clustering features

For the ability to integrate the application with other popular Erlang software:

ejabberd

Couchdb

Yaws

Mochiweb

RabbitMQ

All those software are getting mindshare in their area. OMS will both add
value and gain from them.

Rich real time web applications in Erlang

OneTeam Media Server gives the opportunity to build Adobe Flash or Adobe
Air connected / real time applications in Erlang
OneTeam Media Server is an application server. It is used as a building brick
for your own applications.

Example applications:
Low latency multiplayer games.
Video voicemail (Seesmic-like features).
Video conferencing system.
Video distribution system.
Event distribution system for financial dashboards.
Push base news distribution systems.
...

OneTeam Media Server perspective

OneTeam Media server along with ejabberd can help building the most

versatile web application server platform.

Both components can play a different role but can become a key element in

the real time web.

Can bring new web developers / startup to Erlang.

All in Erlang !

Using OneTeam Media Server

Technical overview

Several Adobe protocols are at the core of the platform:
RTMP: Real Time Messaging Protocol (port 1935)

Originally used for Flash persistence.
Now used for Flash RPC, streaming, messaging.

AMF: Action Message Format. Protocol to define the RPC and message
form. This is a binary serialized representation of Flash objects.

Technically RTMP is the main transport protocol, but actually it is AMF over
RTMP.

All other features are build upon those foundations:
Shared objects
Publish and subscribe
Video streaming

Technical overview

RTMP exist in various flavour:
RMTP: Standard TCP/IP (port 1935).
RTMPS: Secured RTMP. This is basically RTMP inside TLS.
RMTPT: Tunnelled over HTTP (port 80). Fallback mechanism used to
pass firewalls. It can work over HTTPS as well.

Yes, it works with video streaming as well

Currently OMS implements only RTMP
This is the bigger part
Adding other variations should be straigthforward

Flash client point of view

The first thing to do to work with OMS on the Flash client is to connect to
OMS.

This is done with the Flash connection object:

flash.net.NetConnection

Once you have done that you have a bidirectional stream to perform RPC
from client to server or from server to client.

If you want to support media publishing (Voice or Video), you have to use
another Flash object:

flash.net.NetStream

OMS application point of view

You need a module to handle the connection from your application.

You do that by creating an adaptor for the Flash NetConnection.

This is an arbitrary module implementing connect/2 method and link to

oms_netconnection object.

If you want to stream video or voice from webcam / microphone you need to

implement specific feature in a netstream module and link it to

oms_netstream object

Example of function to implement: publish/2,closeStream/2

OneTeam Media Server: Example
applications

Basic application

First basic application will only open the RTMP connection between Flash
client and module.

Client code (Flex)
Server code (Erlang)

Basic application: client
<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute" initialize="init()">
 <mx:Script>

<![CDATA[

import flash.net.NetConnection; import flash.net.SharedObject; import mx.controls.Alert

private var myconn:NetConnection;
public function init():void {

 myconn = new NetConnection();

 myconn.addEventListener("netStatus", onNCStatus);

 myconn.connect("rtmp://127.0.0.1/demo");
}

public function onNCStatus(event:NetStatusEvent):void {
 if(event.info.code == "NetConnection.Connect.Success")

 { Alert.show("Connected to OMS"); }

 else { Alert.show("Failed to connect to OMS. Reason:"+ event.info.code); }

 }
]]>

 </mx:Script>

</mx:Application>

http://www.adobe.com/2006/mxml
http://www.adobe.com/2006/mxml

Basic application: Server
-module(mynetconnection).

-export([connect/2]).

connect(_CallC,_Msg) ->
 io:format("my netconnection received call"),
 {object,Obj} = lists:nth(1,_Msg),
 case dict:find("objectEncoding",Obj) of
 {ok,{number,Encoding}} ->
 io:format("~nEncoding is :~w",[Encoding]),
 {ok,[{result,[{mixed_array,{0,[{"objectEncoding",{number,Encoding}},{"application",{null,0}},{"level",
 {string,"status"}},{"description",{string,"Connection succeeded"}},
 {"code",{string,"NetConnection.Connect.Success"}}]}}]}]};
 error ->
 {ok,[{result,[{object,dict:from_list([{"level",{string,"status"}},
 {"code",{string,"NetConnection.Connect.Failed"}},
 {"description",{string,"Connection failed"}}])}]}]}
 end.

This is raw data structure,
but we provide helpers /
wrappers

Application XML configuration

<?xml version="1.0" encoding="ISO-8859-1"?>
<omsapp>
<display-name>OMS Demo Application</display-name>
<short-name>demo</short-name>
<apppath>server/ebin</apppath>
<adapter obj="oms_netconnection" adapter="mynetconnection" />
</omsapp>

You can have several
adapter objects

Chat application

The goal of the chat test application is to show you can do push from the
server side by calling functions that are running on the client.

Chat application: Interesting client code

 public function post():void {
 resp = new Responder(glamresult,glamerror);
 myconn.call("post",resp,nick.text,saisie.text);
 input.text = "";
 }

 public function newline(s:String):void {
 chatarea.text += s + "\n";
 }

Chat application: Interesting server code

post(CallC, Msg) ->
 {string,From} = lists:nth(2,Msg),
 {string,Text} = lists:nth(3,Msg),

 gen_server:cast(CallC#callcontext.rtpid,
 {clients_call,"newline",[{string,binary_to_list(Text)}],0}),

 Arraydata = lists:map(fun(X) -> {string,X} end,[]),
 AnsAMF3 = {array,Arraydata},
 {ok,[{result,[AnsAMF3]}]}.

clients_call: call on all clients
client_call: use to call on
only one client

Chat application: Demo

Video player / recorder: Interesting server code

getlistofavmedia(_CallC,_Msg) ->
 io:format("~ngetlistofavmediacalled"),
 Filelist = filelib:wildcard("../medias/*.flv"),
 Arraydata = lists:map(fun(X) -> {string,X} end,Filelist),
 AnsAMF3 = {array,Arraydata},
 {ok,[{result,[AnsAMF3]}]}.

Video player / recorder: Interesting client code
 public function get_list_of_av_medias():void {

 var resp:Responder;
 resp = new Responder(glamresult,glamerror);

 myconn.call("getlistofavmedia",resp);

 }
 private function glamresult(result:Array):void {

 var length:int = result.length;

 var newtab:Array;

 newtab = new Array();
 for (var i:int=0;i<length;i++) {

var temp:String;

temp = result[i];
 var ta:Array;

 ta = temp.split("/");

 var med:String = ta[ta.length - 1];

 newtab[i] = {Name:med};
 }

 medlist.dataProvider = newtab;

 }

Video player / recorder: Interesting client code

public var ns1:NetStream;
public function startrecording(e:MouseEvent):void {
 bustop.visible = true;
 burec.visible = false;
 var temp1:String = medrecname.text.replace("/","");
 var temp2:String = temp1.replace("..","");
 if (ns1 != null) {
 ns1.close();
 ns1.attachCamera(camera);
 ns1.publish(temp2,"RECORD");
 }
}

Video player: Demo

Video chat: Demo

OneTeam Media Server future

What’s next ?

Open Source release
When ?

2009, May 15th (in alpha version)
Release from ProcessOne web site

Planned features
Remote shared objects
RTMPT: Adobe connected protocol over HTTP

This is needed in some context to work over firewalls.
Adobe Livecycle publish and subscribe like features

Ability to support push to client over RTMP / RTMPT
BlazeDS (Java exist in open source but does not support more
efficient protocol RTMP).

More example applications

OneTeam Media Server
http://www.process-one.net/en/oms/

http://www.process-one.net/en/oms/
http://www.process-one.net/en/oms/

