() 6/9/11 11:16 PM

Usually Received, Maybe Late, or
Sometimes Dropped

Scott Lystig Fritchie, Basho Technologies, <scott@basho.com>

Erlang Factory London, June 10, 201 |

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 1 of 66

() 6/9/11 11:16 PM

Who is Scott?

My Employer

Conference Pr

16th International Erlang User

STOCKHOLM, SWEDEN
16th Novermber 2010

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 2 of 66

() 6/9/11 11:16 PM

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 3 of 66

() 6/9/11 11:16 PM

Why verify a protocol?

= Bugs are expensive, especially "in the field"

= Expense:
e Money
e Time
e Reputation

o [ife

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 4 of 66

() 6/9/11 11:16 PM

“In the field” / "on another
planet™

Credit: NASA

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 5 of 66

() 6/9/11 11:16 PM

A flawed protocol will always be
buggy

= |f it will never work correctly, why bother?

= Find bugs in your development environment, not "in the field"

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 6 of 66

() 6/9/11 11:16 PM

Typical protocol testing goals

= Requirements: vague, fuzzy, uncertain generalities
= Does what it is supposed to do?
= Does not do anything that it is not supposed to do!?

= ... and then a miracle occurs.

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 7 of 66

() 6/9/11 11:16 PM

Desirable protocol verification
goals

= Can a design requirement be violated?

e Find a counter-example

Executable

Verification is independent of execution time

e CPU speed, process scheduling, network latency, ...

Find error possibility, not probability

Test software, not hardware (different kettle of fish)

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 8 of 66

Properties

= Safety: something bad never happens

e Example: claim that property X is never violated

= Liveness: something good will always happen

e Example: claim that service Z can always be queried successfully

= A matter of time
e Safety violations happen in finite time

e Liveness violations happen in infinite time

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

6/9/11 11:16 PM

Page 9 of 66

() 6/9/11 11:16 PM

Verification claims

m About state: a state is reachable or unreachable

e Example: bank balance is always greater than 0

= About execution: an execution path is possible or impossible

e Example: if PIN is incorrect, then bank balance is never transmitted

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 10 of 66

() 6/9/11 11:16 PM

msgdropsim primary goals | of 2

= Test message passing algorithms in concurrent systems

Support selective receive
= Deterministic process scheduling unfairness

= Deterministic message dropping

e The Erlang VM is "too good"

= Easy to test for safety violations
e Program state claims

e Execution path claims

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 11 of 66

() 6/9/11 11:16 PM

msgdropsim primary goals 2 of 2

= Methods for testing verification claims
e state check (NOTE: not actually implemented yet!)
e execution path check (via trace logs)

e halting/termination check
m Use QuickCheck Mini

= Use side-effect free code, nothing too Erlang-specific
e Technique is feasible in Ruby, Python, ...
e Feasible with QuickCheck-like libraries: Ruby, Python, ...

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 12 of 66

msgdropsim secondary goals

Coding style similar to gen_fsm

e Though gen_fsm doesn't support selective receive

Don't use any commercial-QuickCheck-only features

e ie., Play well with PropEr

Play well with McErlang

Support liveness property testing (via McErlang)

e Indirectly tested via halting/termination check

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

6/9/11 11:16 PM

Page 13 of 66

() 6/9/11 11:16 PM

Next in this talk: msgdropsim
workflow

"Install" msgdropsim and QuickCheck Mini

Write protocol simulation code
e assumptions

e gen_fsm-like style example

QuickCheck generates some inputs

e Mostly hidden from the user, hooray!

Run simulator with all inputs

e Process scheduler, trace logs, message sending, selective receive

Check results

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 14 of 66

Install QuickCheck Mini and
msgdropsim

Erlang R13 or R14 is fine

PropEr should work, but I've not tried it, sorry!

QuickCheck Mini

o http://www.quvig.com/news 0062 | .html

e follow the directions

msgdropsim
o https://github.com/slfritchie/msgdropsim
e git clone git://github.com/slfritchie/msgdropsim.git

e See README.md for "How to run simulated protocols"

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

6/9/11 11:16 PM

Page 15 of 66

http://www.quviq.com/news100621.html

(2)

Before writing code: some
assumptions | of 3

Multiple Erlang-like processes run concurrently

e Very familiar to gen_fsm, gen_server, "raw" Erlang users

Processes communicate via message passing
e Timeouts are supported

e Process linking and monitoring are not supported

Two types of processes: clients, servers

All processes have a registered name

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

6/9/11 11:16 PM

Page 16 of 66

() 6/9/11 11:16 PM

msgdropsim assumptions 2 of 3

Pure Erlang code plus message passing
e Impure = side-effects

e Impure is not impossible, but debugging can be horrible

List of operations: "What should a simulation do?"
e Your code: make individual operation tuples
e QuickCheck: make random combinations of ops

e Ops are sent as messages at start of simulation

A process must receive a message before it can become runnable!

All processes run FSM-style code

e Old state X + input message M => Do Stuff => new state Y

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 17 of 66

msgdropsim assumptions 3 of 3

= Message receive callback is the scheduler's unit of granularity

e No preemption while executing a single callback
= Scheduler runs until all processes block waiting for messages

= Scheduler maintains two trace logs for property verification

e System trace: all scheduling and message events

Example: cl receives 'foo' from s2, cl sends 'foo' to s3
e User trace: events generated by simulation code annotations

e Example: c4 submitted novel to publisher

= Your verify_property/l | function checks traces for safety violations

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

6/9/11 11:16 PM

Page 18 of 66

() 6/9/11 11:16 PM

Code: writing callback functions

" gen initial ops(NumClients, NumServers,
NumKeys, OptionList)

= gen client initial states(NumClients,
OptionList)

" gen server initial states(NumServers,
OptionList)

» verify property/11
"= all clients()
" all servers()

= one function (arity 2) for each FSM state for clients, servers

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 19 of 66

() 6/9/11 11:16 PM

Echo service callbacks, | of 4

all clients() ->
[¢l, ¢2, ¢c3, c4, ¢c5, ¢c6, c7, c8, c9].

all servers() ->
[sl, s2, s3, s4, s5, s6, s7, s8, s9].

o\°
o\°

spec (integer (), property list()) ->
list({atom(), term(), fun() | atom()}).

o\
o\°

gen_client_initial_ states(NumClients, _OptionList) ->
Clients = lists:sublist(all_clients(), 1, NumClients),
[{Clnt, [], fun echo_client/2} || Clnt <- Clients].

gen_server_initial_states(NumServers, _OptionList) ->
Servers = lists:sublist(all_servers(), 1, NumServers),
[{Server, placeholder, fun echo_server/2} || Server <- Servers].

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 20 of 66

() 6/9/11 11:16 PM

Echo service message sequence
diagram

l: 1 1 E’rl t '..':,r-|“,E,r-

+echo, ClientName, Msgh

{ECHG_FEpIH: Mgt

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 21 of 66

() 6/9/11 11:16 PM

Echo service FSM state diagram

Echo client FSM Echo server FSM

-{echo, ClientName, Msg}

{echo_reply, Msg} fimeout

echo_client_waiting

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 22 of 66

() 6/9/11 11:16 PM

Echo service callbacks, 2 of 4

o\°
o\°

spec (integer(), integer()) ->
list{atom(), term()}).

o\°
o\°

gen_initial_ops(NumClients, NumServers, _NumKeys, _Props) ->
list (gen_echo op(NumClients, NumServers)).

gen_echo_op(NumClients, NumServers) ->
?LET({ClientI, Serverl},
{choose(1l, NumClients),
choose (1, NumServers)},
begin
Client = lists:nth(ClientI, all_clients()),
Server = lists:nth(ServerI, all_servers())

{Client, {echo_op, Server, int()}}
end) .

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 23 of 66

() 6/9/11 11:16 PM

Echo service callbacks, 3 of 4

o\°
o\°

spec (SelectiveReceiveMsg::term(), State::term()) ->
{recv_general, fun() atom(), NewState::term()} |
{recv_timeout, fun() | atom(), NewState::term()}.

o\°
o\°

o\°
o\°

echo_client ({echo _op, Server, Key}, ReplyList) ->
slf msgsim:bang(Server,
{echo, slf msgsim:self (), Key}),
{recv_timeout, echo_client waiting, ReplyList}.

echo_client_waiting(timeout, ReplyList) ->
NewReplyList = [server_ timeout|ReplyList],
{recv_general, echo_client, NewReplyList};

echo_client_waiting({echo_reply, Msg}, ReplyList) ->
{recv_general, echo_client, [Msg|ReplyList]}.

echo_server({echo, Client, Msg}, St) ->
slf msgsim:bang(Client, {echo_reply, Msg}),
{recv_general, same, St}.

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 24 of 66

QuickCheck inputs

m First, QuickCheck chooses:
e Number of client processes
e Number of server processes

e A key number (usually unused ... code bitrot)

m Second, QuickCheck chooses:

e (cb) Initial operation list

(cb) Initial state data for client procs

(cb) Initial state data for server procs

(int) Scheduler token list

(int) Network partition list

(int) Message delay list

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

6/9/11 11:16 PM

Page 25 of 66

() 6/9/11 11:16 PM

Process runnable states and
message handling

= Runnable states:
e mbox: Try to receive a message from the inbox
e outbox: Try to send a queued message

= Message sending is not instantaneous

e message may be dropped (network partition)

e message may be delayed (consume extra scheduler tokens)

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 26 of 66

() 6/9/11 11:16 PM

The admission token scheduler,
network partitions, message
delays

m QuickCheck creates a list of tokens to drive scheduler

= | token = a process name

e [cl, s2, sl1, s2, s2, s2]

= Network partitions and delays

e {partition, FromProcs, ToProcs, StartStep,
EndStep}

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 27 of 66

Run simulator with all the inputs

$ cd /path/to/top/of/msgdropsim

$ make

$ erl -pz ./ebin

[«..]

> Propl = slf msgsim gc:prop simulate(echo_sim, []).
> eqc:quickcheck (Propl).

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

6/9/11 11:16 PM

Page 28 of 66

(2)

Options

[{min_clients, N}, {max_clients,
{min_servers, N}, {max_servers,

{min_keys, N}, {max_keys, M}
disable_partitions,
disable_delays

crash_report,

{stop_step, N}]

o® o° o\°

o\°

o\°

M},
M},

def: N=1, M=9

def: N=1, M=9

ignore

disable network partitions
disable message delays
enable verbose crash report
stop execution at step N

o\°

o\°

> Opts = [{max_servers, 2}, disable_ partitions],

> eqc:quickcheck(slf msgsim_gc:prop_ simulate(echo_sim, Opts)).

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

6/9/11 11:16 PM

Page 29 of 66

() 6/9/11 11:16 PM

A running simulation: system
trace log events

{bang, Step, Sender, Rcpt, Msg}

{delay, Step, Sender, Rcpt, Msg, {num_rounds, N}}
{drop, Step, Sender, Rcpt, Msg}

{deliver, Step, Sender, Rcpt, Msg}

{recv, Step, Sender, Rcpt, Msg}

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 30 of 66

() 6/9/11 11:16 PM

Implementing selective receive

= Erlang VM implements SR deep in the virtual machine

" We need to fake it.

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 31 of 66

() 6/9/11 11:16 PM

“Impurity in the defense of
liberty is no vice.” -- Barry
Codewater

= Selective receive has side-effects (duh!)
= Faking it is ugly
e A monad would be helpful

= Use process dictionary

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 32 of 66

() 6/9/11 11:16 PM

Checking results:
verify_property/I |

= Arguments:
e NumClients, NumServers, OptionList
o QuickCheck-generated inputs: Ops list, partitions list, delays list
e Starting simulator state
e Ending simulator state
e System trace list

e User trace list

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 33 of 66

() 6/9/11 11:16 PM

Echo service callbacks, 4 of 4

verify property(NumClients, NumServers, _Props, Fl, F2,

Ops, _SchedO, Runnable, Schedl,
Trc, _UTrc) ->

Clients = lists:sublist(all_clients(), 1, NumClients),

Predicted = predict_echos(Clients, Ops),

Actual = actual_echos(Clients, Schedl),

Runnable == false andalso

exact_msg or_timeout(Clients, Predicted, Actual).

exact_msg or_timeout(Clients, Predicted, Actual) ->
lists:all(
fun(Client) ->
Pred = proplists:get_value(Client, Predicted),
Act = proplists:get_value(Client, Actual),

lists:all(fun({X, X}) -> true;
({_X, server_timeout}) -> true;
() -> false

end, lists:zip(Pred, Act))
end, Clients).

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 34 of 66

() 6/9/11 11:16 PM

What if verify_property() fails?

$% From echo_badl_sim.erl

?WHENFAIL (

io:format("Failed:\nFl = ~p\nF2 = ~p\nEnd = ~p\n"
"Runnable = ~p, Receivable = ~p\n"
"Predicted ~w\nActual ~w\n",
[F1, F2, Schedl,
slf msgsim:runnable_procs(Schedl),
slf msgsim:receivable procs(Schedl),
Predicted, Actual]),

o\°
o\°

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 35 of 66

verify_property() failure, | of 4

Failed:

F1 = {

%

F2 = {

1,1,1}

1 server, 1 client, one key
[{cl,{echo_op,sl,14}},{cl,{echo_op,sl,0}}],
% 2 echo ops: echo 14, then echo 0O
[{cl,[],badl _client}],
[{sl,placeholder,badl_server}],

% client & server initial state

[sl,cl],

% scheduler token list

[{partition,[],[],0,0}],

[1}

% partition & delay lists: no interference

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

6/9/11 11:16 PM

Page 36 of 66

6/9/11 11:16 PM

verify_property() failure, 2 of 4

End =

{sched, 10,99999999999,4,
[sl,cl],
% Scheduler token list
[1,
[{cl,{proc,cl,[14,14]1,[1,{[1,[]1},mbox,badl client,
undefined}},

{sl,{proc,sl,14,[1,{[1,[]1},mbox,badl_server,
undefined}}],

* Final process state: private state, msgs, etc.

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 37 of 66

() 6/9/11 11:16 PM

verify_property() failure, 3 of 4

[{recv,9,s1,cl,{echo_reply,14}},
{deliver,8,s1,cl,{echo_reply,14}},
{bang,7,s1,cl,{echo_reply,14}},
{recv,7,cl,sl,{echo,cl,0}},
{deliver,6,cl,sl,{echo,cl,0}},
{bang,5,cl,sl,{echo,cl,0}},
{recv,5,scheduler,cl, {echo_op,sl,0}},
{recv,4,sl,cl,{echo_reply,14}},
{deliver,3,sl,cl, {echo_reply,14}},
{bang,2,s1,cl,{echo_reply,14}},
{recv,2,cl,sl,{echo,cl,14}},
{deliver,1,cl,sl,{echo,cl,14}},
{bang,0,cl1,s1, {echo,cl,14}},
{recv,0,scheduler,cl, {echo_op,sl,614}},
{deliver,0,scheduler,cl, {echo_op,sl1,0}},
{deliver,0,scheduler,cl, {echo_op,sl,14}}],

% System trace list

1,[1,[]1,echo_badl_sim,[]}

User trace list, partition & delay specs, etc.

o0

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 38 of 66

6/9/11 11:16 PM

verify_property() failure, 4 of 4

Runnable = [], Receivable = []
Predicted [{cl,[14,0]}]

Actual [{cl,[14,14]}]

false

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 39 of 66

Stats when things are "correct™

OK, passed 100 tests

29% at_least_1 _msg_dropped

clients : Min: 1
servers : Min: 1
echoes : Min: O
msgs sent : Min: O
msgs dropped: Min: O
timeouts : Min: O
true

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

Max:
Max:
Max:
Max:
Max:
Max:

9
9
10
18
8
8

Avg: 4.84
Avg: 4.60
Avg: 3.07
Avg: 5.00
Avg: 0.760
Avg: 0.760

Total:

Total:
Total:
Total:
Total:
Total:

484

460
307
500
76
76

6/9/11 11:16 PM

Page 40 of 66

() 6/9/11 11:16 PM

QuickCheck code for measuring
stats

classify(NumDrops /= 0, at_least_1 _msg dropped,

measure("clients ", NumClients,
measure("servers ", NumServers,
measure ("echoes ", length(Ops),
measure("msgs sent ", NumMsgs,

measure ("msgs dropped", NumDrops,
measure("msgs delayed", NumDelays,

measure ("timeouts , NumTimeouts,

X
TO eeooe

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 41 of 66

() 6/9/11 11:16 PM

McErlang: harder than it looks

You: write "normal” Erlang

e Readlly, a subset of Erlang ... avoid side-effects!

McErlang: full exploration of all possible executions

Very easy to find exponential state growth

Requires much work to create simple tests that fit in RAM

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 42 of 66

McErlang and msgdropsim status

Not well integrated, sorry.

Exhaustive state testing is hard to do correctly.

Selective receive =/= gen_fsm code, so McErlang's gen _fsm support
does not help.

Must convert msgdropsim-callbacks to "raw" Erlang

e A parse transform could be a big help, not done yet.

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

6/9/11 11:16 PM

Page 43 of 66

msgdropsim vs. “raw" Erlang

msgdropsim style:

client_waiting({echo_reply, Msg}, St) ->
{recv_general, client_init, [Msg|St]};

client waiting(timeout, St) ->
{recv_general, client_init, [server_timeout|St]}.

"raw" Erlang:

echo_client waiting(St) ->
receive
{echo_reply, Msg} ->
client_init ([Msg|St])
after ?SOME_TIME ->
client_init([server_timeout|St])
end.

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

6/9/11 11:16 PM

Page 44 of 66

We have a memory problem....

Using distrib_counter_2phase_vclocksetwatch_sim.erl with message

dropping enabled:
1l client x 1 counter
2 clients x 1 counter
3 clients x 1 counter
2 clients x 1 counter
2 clients x 1 counter
4 clients x 1 counter

recommend "The SPIN Model Checker: Primer and Reference

Manual"

op
op
op
op
op
op

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

each
each
each
each
each
each

I T T]
NWNRR R

server
server
server
servers
servers
servers

126

11,939
1,569,343
13,140,204
149,884,834
387,461,768
(5.5 hours)

states
states
states
states
states
states

6/9/11 11:16 PM

Page 45 of 66

() 6/9/11 11:16 PM

Message dropping and McErlang

mc_bang (Rcpt, Msg) ->
Send = fun() ->
Rcpt ! Msg
end,
Drop = fun() ->
mce_erl:probe({drop msg, mc_self(),
Rcpt, Msg})
end,
mce_erl:choice([{Send, []}, {Drop, []1}1).

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 46 of 66

TODO list / future work &
wishes

= Emulate BIFs for monitoring and linking

= Emulate gen_fsm/gen_server semantics: test code written for them
as-is

= Add state verification: after every execution step, verify state of all
processes.

= Failure output: system state dump should be easier to read

= | ots of McErlang integration work remains

= Parse transform to ease McErlang use

= Visualization: draw MSC diagram of failing test case

= Visualization: 2D animation of failing test case

= Implement more protocols: alternating bit, leader election, Paxos, let

your imagination run wild....

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

6/9/11 11:16 PM

Page 47 of 66

() 6/9/11 11:16 PM

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 48 of 66

() 6/9/11 11:16 PM

In summary

\

R

QuickCheck s |
A HARSH '
MISTRESS

= Credit: Orb Books cover, 1997 (?)

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 49 of 66

() 6/9/11 11:16 PM

msgdropsim summary

= YES: Test message-passing code with random message drops and
scheduling (un)fairness

o Quite successful at finding weird corner cases

= PARTIAL: Integration with McErlang for exhaustive state exploration
e If you can set it up correctly...

e .. extremely successful at finding all bugs

= msgdropsim has been very helpful in Basho product R&D

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 50 of 66

() 6/9/11 11:16 PM

The end

= Any questions?
= https://github.com/slfritchie/msgdropsim

m scott@basho.com

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 51 of 66

https://github.com/slfritchie/msgdropsim
mailto:scott@basho.com

() 6/9/11 11:16 PM

Backup material

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 52 of 66

() 6/9/11 11:16 PM

Distributed counter protocol
FSM | of 2

Two-phase protocol: ask+set FSM

Phase 1: Servers are asked for permission to modify a value.

If permission is granted, other clients will be denied until successful Phase 2 or Phase 1 cancel.
Phase 2: Send 'set' command to all servers that gave us successful Phase 1 replies.

(OK for correctness but fairness not guaranteed)

phase2 set -> error
phasel cancel -> ok

.

server_unasked

phasel ask -> okjphase2 set -> ok

Gt 20

phase2 set (wrong client) -> error
phasel ask ->sorry
phasel cancel (wrong client) -> ok

Send 'ask' commands

'

phl_waiting:
DOWN Waiting for 'ask' command results Server reply X

~ 1

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 53 of 66

6/9/11 11:16 PM

(2)

Distributed counter protocol
FSM 2 of 2

DOWN or
. Server reply X
timeout or .
We have quorum of ok replies
erver reply X
P

send sets:
Send Phase 2 'set' commands to all
servers that gave us successful Phase 1 replies

Send Phase 1 'cancel' commands to all
servers that gave us successful Phase 1 replies

DOWN or
timeout or timeout timeout

Server reply sorry

Server reply ok
or DOWN

ph2_waiting:
Waiting for 'set' command results

Server reply ok
or DOWN

phl_cancelling:
Waiting for Phase 1 'cancel' results

Server reply ok
or DOWN

finished:
Send ok to client
Stop normal

error:
Quorum majority not possible/failed
Send error to client

Stop normal

Page 54 of 66

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

() 6/9/11 11:16 PM

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 55 of 66

(2)

Distributed counter in action

> eqc:quickcheck (eqc:numtests (5000,
slf msgsim_gc:prop_simulate(
distrib_counter_2phase_sim, []))).

[-.-]
OK, passed 5000 tests

50.96% at_least_1 msg_dropped

clients Min: 1 Max:
servers Min: 1 Max:
sched steps Min: 0 Max:
crashes Min: 0 Max:
ops Min: O Max:
emitted Min: O Max:
phl t.out Min: 0 Max:
phl g.fail Min: 0 Max:
ph2 t.out Min: 0 Max:
msgs sent Min: 0 Max:
msgs dropped Min: 0 Max:
timeouts Min: 0 Max:

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

9 Avg: 4.955 Total: 24773

9 Avg: 5.015 Total: 25075
1959 Avg: 144.6 Total: 722961
0 Avg: 0.000e+0 Total: O

17 Avg: 4.184 Total: 20919
16 Avg: 1.278 Total: 6389

17 Avg: 0.7982 Total: 3991
16 Avg: 1.983 Total: 9917

2 Avg: 0.1244 Total: 622

477 Avg: 52.96 Total: 264822
1331 Avg: 5.758 Total: 28791
1160 Avg: 4.902 Total: 24510

6/9/11 11:16 PM

Page 56 of 66

() 6/9/11 11:16 PM

Debugging light-hours away

Mars Pathfinder, 1997

"reset bug"

Process scheduler priority inversion

e watchdog bark -> reset -> data loss

Debugged using exact same hardware on Earth

SPIN verification tool: ~25 lines of code

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 57 of 66

() 6/9/11 11:16 PM

You don't know...

= ... where the flaw is
= ... when the flaw is executed
= ... know when a symptom appears

= ... how much time elapsed between flaw execution & symptom

e Insert bad hand grenade analogy

... which log file data to gather

!

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 58 of 66

(2)

Scheduler code

run_scheduler_with_tokens (Tokens, Schedule) ->
try
lists:foldl (fun(Name, S) ->
consume_scheduler_token(Name, S)
end, Schedule, Tokens)
catch throw:{receive_crash, NewS} ->
NewS
end.

consume_scheduler_token(ProcName, S)
when is_atom(ProcName) ->
P = fetch_proc(ProcName, S),
consume_scheduler_token(P, S, 0).

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

6/9/11 11:16 PM

Page 59 of 66

(2)

Simulator scheduler record

-record (sched, {
step = O,
stop_step,
numsent = 0,
tokens,
crashed = [],
procs,
trace = [],
utrace = [],
partitions,
delays,
module,
options

}).

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

o® o o° o° o° o° o° o° o° o° o°

o\°

Scheduling step #
Debugging: step # to stop
Number of messages sent
Process scheduler tokens
Processes that have crashed
key=proc name, val=#proc{}
trace events

user trace events

network partition spec
message delay spec
implementation module name
implementation options list

6/9/11 11:16 PM

Page 60 of 66

Simulator process record

-record (proc, {
name,
state,
mbox,
outbox,
next,
recv_gen,
recv_w_timeout

}).

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

o® o° o° o° o9 o° o°

All procs have a name

proc private state

incoming mailbox

outgoing messages + delay
next execution type

For receive without timeout
For receive with timeout

6/9/11 11:16 PM

Page 61 of 66

() 6/9/11 11:16 PM

Receive loop: caller and
implementation

erlang:put ({?MODULE, sched}, S),

erlang:put ({?MODULE, self}, Pi#proc.name),

RecvVal = receive_loop (PO#proc.mbox, RecvFun,
PO#proc.state),

o\°
o\°

receive loop([], _Fun, _St) ->
no_match;
receive_loop([{imsg, _Sender, _Rcpt, H} = IMsg|T],
RecvFun, ProcState) ->

try

Res = RecvFun(H, ProcState),

{IMsg, Res} % Tell caller which imsg we picked
catch

error: function_clause ->

receive_loop (T, RecvFun, ProcState);
XY ->
{error, H, X, Y}
end.

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 62 of 66

(2)

Receive loop: post-call
imperative pseudo-code

{ReceiveType, NextStateName, NewProcS}} ->
RecFun0 = name/fun for next state
NewProcS = new process internal state term
add_trace({recv, Step, message details...}),
delete_message(IMsg),
store next_state(ReceiveType, NextStateName),
increment_step();
no_match ->
do_nothing(); % Token will not be consumed
{error, Msg, X, ¥} ->
add_trace({process_crash, ProcName, ...}),
remove_proc_from_scheduler(),
increment_step();

{IMs

o° o° \Q
o0 =

o\°

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2)

6/9/11 11:16 PM

Page 63 of 66

() 6/9/11 11:16 PM

Sending messages

= Dictionary of {Sender, Recipient} => [{StepStart, StepStop, Delay}]

= One dictionary for network partitions (delay unused)

= One dictionary for message delays

if
is_integer (Delay) ->
add_trace({delay, ..., {num_rounds, Delay}}),
queue_message (Msg, {t_delay, Delay});
DropMessage ->
add_trace({drop, ...});
true ->
queue_message (Msg, t _normal)
end

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 64 of 66

() 6/9/11 11:16 PM

Receiving messages ... what
about timeouts?

= Try running scheduler with scheduler token list

= Did scheduler step # advance!

e Yes: Run scheduler again (i.e., loop!)

e No:

o Let Ps = all processes with recv_timeout state flavor

o [send timeout(P) || P <- Ps]

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 65 of 66

() 6/9/11 11:16 PM

System & user trace lists

= Maintained as simple lists inside the #sched record
= System trace log is maintained automaticallly
= User code is annotated, e.g,,

" s1f msgsim:add utrace(Meaningful::term())

help? contents? restart? slide 2/63

file:///Users/fritchie/src/msgdropsim/Talk/Talk.html#(2) Page 66 of 66

http://www.w3.org/Talks/Tools/Slidy/help.html
javascript:toggleTableOfContents()
javascript:firstSlide()

