Testing AUTOSAR components
with QuickCheck

Thomas Arts
Quvig / Chalmers

Is the software in different ECUs
compatible?

First Electronic
Order Control
Supplier Unit

(Tier 1) (ECU)

Second
Order
Supplier
(Tier 2)

Software

Is the software implemented conform

First
Order
Supplier
(Tier 1)

the specification?

Electronic
Control

Unit
(ECU)

Second
Order
Supplier
(Tier 2)

Software

The problem

How to test for conformance?

Solution: outsource to India
Put 30+ person years on writing tests

Result: disaster
Why?

Testing AUTOSAR

AUTOSAR is a standard defined by a consortium:
everyone wants their things in there

Result:

Everything is configurable. Thousands of
parameters can be specified

The configuration file(s) and process are
standardized ©

Configurations are vendor specific

system Configuration
template
tool

—> BNl

Code

.h :
h generatlon
l D tool

Configurations are vendor specific

System : :
template Configuration .
tool

Code

.h -
generation
Np -

A test is:
A configuration and a set of API calls with their
expected results.

Tests

configurations are small

a number of APl sequences per configuration

Vendor may need to change configuration a bit
before code can be generated and test can be
run.

Doing the maths: 1 person 1 week

Q
Q
=
i
(%)
C
@
()
S
Q
o
o
o
n
-
)
O
S
Q
-
)
o]0]
=
@
)

Tests

Doing the maths:

30 person years, 2-5 tests per week per developer, 3000-

6000 tests

Executing those tests is a nightmare, since one needs to

adopt the configurations and generate code

Traditional Testing

Module testing, each module separately

Minimal configuration to support a test
case

A few test cases for that configuration
One feature/requirement tested at the time

Our approach: models

XML
confi
OEM J Thousands of
) tests run
[Report
deviations
G . from
e&esrta ¢ standard
Vendor lib

QuickCheck Automotive

10 times less code
Largely independent of configuration
More scenario’s tested

Model-based testing

 Several modules tested in a cluster

* One large configuration supporting all test
cases

* A huge number of test cases automatically
generated

 All features/requirements tested at the
same time

QuickCheck automatically generates all
marshaling code to talk to C

Model based testing

We created models for 3 clusters:
COM/PDUR, CAN and FlexRay

We generated and ran tests against 3
already tested implementations of each
cluster: 3 software vendors

We found deviations in each.
* some deviations on purpose,
* each vendor recognized some as bugs.

QuickCheck models

500 pages of AUTOSAR document -
* 1500-2000 lines of model code
(cf. 15000 lines of C code)

e Building the CAN model
About 12 weeks

Results

Erroneous dependencies between features found
« Mix of many features tested in same tests

Failures found in “obvious fault-free implementation”

« Everything is tested, even parts otherwise excluded by manual
tests

General higher coverage

« Many more tests executed

« All assertions always considered
Common human mistakes detected

« Common human errors for both developer and test designer are
found by model

Ambiguities in specification found more often

« All assertions always to be considered, even for “absurd”
scenarios

Example: Mixed features

StandardCAN Id ExtendedCAN Id

11 bits | | 29 bits

Priority: lowest number has highest priority

Example:
Extended Id 113 has higher
priority than standard Id 114

Buffered higher priority
messages should be sent first

Example: Mixed features

StandardCAN Id

ExtendedCAN Id

11 bits 29 bits
unit32
Force

1 extended buffering

O standard _
transmit,[1,112,[67],'CAN_OK],
transmit,[2,113,[0],'CAN_BUSY"], Triager
transmit,[3,114,[0], CAN_BUSY'], Sef]’gin
tx_confirmation,[1,112,[67]] 9

Check callouts: 112, 114 sent, why?

Example: Unrelated events

Stop a group =>
cancel any pending gatewaying for
the included IPDUs

init,[],
start_group,[10,false],
rx_indication,[canif,1,<<0,0,0,0>>],
rx_main, [

stop_group,[1], —————
route_signals,[],

tx_main,]

Unrelated group

Check callouts: Nothing sent, why?

AUTOSAR

Similar when you- ™
|mplement

When we model, we Interpret the standard

When we test we discover other possible
Interpretations

It gets interesting when we detect different
Interpretations among vendors

Conclusions

We created models for 3 clusters.

We can read configurations and adapt the model to
these configurations... Thus, generated test cases make
sense in context of that configuration.

Testing C code with Erlang and QuickCheck
outperforms throwing man power to the problem.

“_._..-n'-—-"‘

t— —With QuickCheck Automotive

