Erlando
Imitation (of syntax)
is the most sincere form of flattery

Matthew Sackman
matthew@rabbitmg.com

ERLANG SYNTAX: SOME OBSERVATIONS Rabbit

Recent blog post by David Pollak:

So, why is Erlang not part of the mainstream? Why aren't
developers flocking to it?

First, it’s ugly. I never really understood how aesthetics
impact developers, but beauty on the developer’s screen
does lead to better results...

Examples: record syntax; it's a parenthesis-ridden language;
numbered variables...

vmware

ERLANG SYNTAX: SOME OBSERVATIONS Rabbit

Recent blog post by David Pollak:

Fourth, Erlang is allimmutable all the time. This is hard
to grasp and work with, especially coming from a Java or
Ruby background. And without state monads and other
pieces that the Haskell folks built into the libraries, the only
way to carry state around your application is on the stack via
recursion within processes/Actors and message passing....

ERLANG SYNTAX: SOME OBSERVATIONS Rabbit

Recent blog post by David Pollak:

Fourth, Erlang is allimmutable all the time. This is hard
to grasp and work with, especially coming from a Java or
Ruby background. And without state monads and other
pieces that the Haskell folks built into the libraries, the only
way to carry state around your application is on the stack via
recursion within processes/Actors and message passing....

Immutable: tough — get used to functional languages

vmware

ERLANG SYNTAX: SOME OBSERVATIONS Rabbit

Recent blog post by David Pollak:

Fourth, Erlang is allimmutable all the time. This is hard
to grasp and work with, especially coming from a Java or
Ruby background. And without state monads and other
pieces that the Haskell folks built into the libraries, the only
way to carry state around your application is on the stack via
recursion within processes/Actors and message passing...

Immutable: tough — get used to functional languages
Lack of machinery for abstractions: we can fix that...

vmware

ERrRLANDO Rabbit

ERLANDO

» A set of extensions for Erlang
» Implemented as parse-transformers (just like QLC)

» cut - implements Scheme-like cuts (cheap syntax for partial
application / currying)

» do - implements Haskell-like do-notation

» import-as — very simple remote function importing with
aliasing

vmware

Curt Rabbit

info_all(VHostPath, Items) ->
map (VHostPath, fun (Q) -> info(Q, Items) end).

Curt Rabbit

info_all(VHostPath, Items) ->
map (VHostPath, fun (Q) -> info(Q, Items) end).

backing_queue_timeout(State = #q { backing_queue = BQ }) ->
run_backing_queue(
BQ, fun (M, BQS) -> M:timeout(BQS) end, State).

Curt Rabbit

info_all(VHostPath, Items) ->
map (VHostPath, fun (Q) -> info(Q, Items) end).

backing_queue_timeout(State = #q { backing_queue = BQ }) ->
run_backing_queue(

BQ, fun (M, BQS) -> M:timeout(BQS) end, State).

reset_msg_expiry_fun(TTL) ->
fun (MsgProps) ->
MsgProps #message_properties {

expiry = calculate_msg_expiry(TTL) }
end.

vmware

Curt Rabbit

> All three cases show funs being created to supply parameters
to simple expressions.

Curt Rabbit

> All three cases show funs being created to supply parameters
to simple expressions.

» Really, this is partial application: some parameters to the
expressions won't be known until later on.

Curt Rabbit

> All three cases show funs being created to supply parameters
to simple expressions.

» Really, this is partial application: some parameters to the
expressions won't be known until later on.

» The funs add quite a lot of noise...

Curt Rabbit

> All three cases show funs being created to supply parameters
to simple expressions.

» Really, this is partial application: some parameters to the
expressions won't be known until later on.

» The funs add quite a lot of noise...

» How about changing the syntax? Lose some flexibility, but gain
brievity...

vmware

Curt Rabbit

THE MEANING OF _

v

_can already appear in patterns. That is unchanged.

v

Cut allows _ to appear outside of patterns.

v

Where a _ is found which isn’t in a pattern, it becomes a
parameter to the expression in which it directly appears.

v

Multiple _s can appear in the same expression: multiple
parameters

vmware

CUT IN ACTION Rabbit

info_all(VHostPath, Items) ->
map (VHostPath, fun (Q) -> info(Q, Items) end).

CUT IN ACTION Rabbit

info_all(VHostPath, Items) ->
map (VHostPath, fun (Q) -> info(Q, Items) end).

info_all(VHostPath, Items) -> map(VHostPath, info(_, Items)).

CUT IN ACTION Rabbit

backing_queue_timeout(State = #q { backing_queue = BQ }) ->
run_backing_queue (
BQ, fun (M, BQS) -> M:timeout(BQS) end, State).

CUT IN ACTION Rabbit

backing_queue_timeout(State = #q { backing_queue = BQ }) ->
run_backing_queue (
BQ, fun (M, BQS) -> M:timeout(BQS) end, State).

backing_queue_timeout (State = #q{backing_queue = BQR}) ->
run_backing_queue(BQ, _:timeout(_), State).

CUT IN ACTION Rabbit

reset_msg_expiry_fun(TTL) ->
fun (MsgProps) ->
MsgProps #message_properties {
expiry = calculate_msg_expiry(TTL) }
end.

CUT IN ACTION Rabbit

reset_msg_expiry_fun(TTL) ->
fun (MsgProps) ->
MsgProps #message_properties {
expiry = calculate_msg_expiry(TTL) }
end.

reset_msg_expiry_fun(TTL) ->
_ #message_properties { expiry = calculate_msg_expiry(TTL) I}.

vmware

CUT CONTROVERSY! Rabbit

» Should there be a phantom cut marker to make it clear a cut is
in use?

CUT CONTROVERSY! Rabbit

» Should there be a phantom cut marker to make it clear a cut is
in use?
Menu = #menu{ breakfast = Toast, dinner = _ }
versus
Menu = cut(#menu{ breakfast = Toast, dinner = _ })

CUT CONTROVERSY! Rabbit

» Should there be a phantom cut marker to make it clear a cut is

in use?

Menu = #menu{ breakfast = Toast, dinner = _ }
versus

Menu = cut(#menu{ breakfast = Toast, dinner = _ })

» Cut doesn't excuse poorly named variables! How about
MenuCtr or MenuFun or PendingDinner?

vmware

CUT CONTROVERSY! Rabbit

» Why limit it to only shallow expressions?
NotAFun = {a, b, {c, _, e}}

CUT CONTROVERSY! Rabbit

» Why limit it to only shallow expressions?
NotAFun = {a, b, {c, _, e}}

» Cutis not a general purpose replacement of funs!

CUT CONTROVERSY! Rabbit

» Why limit it to only shallow expressions?
NotAFun = {a, b, {c, _, e}}

» Cutis not a general purpose replacement of funs!
» However, time will tell!

THE Cut GOTCHA Rabbit

Because a simple fun is being constructed by the cut, the
arguments are evaluated prior to the cut function.

f1(_, _) -> io:format("in f17n").

test() ->
F = fi(io:format("test line 1™n"), _),
F(io:format("test line 2°n")).

will print out

test line 2
test line 1
in f1

vmware

MORE CUT EXAMPLES Rabbit

» Tuples

F={_, 3},
{a, 3} = F(a).

MORE CUT EXAMPLES Rabbit

» Lists
dbl_cons(List) -> [_, _ | List].
test() ->

F = dbl_cons([33]),
[7, 8, 33] = F(7, 8).

MORE CUT EXAMPLES Rabbit

» Lists
dbl_cons(List) -> [_, _ | List].
test() ->

F = dbl_cons([33]),
(7, 8, 33] = F(7, 8).
» Lists in tail position are not sub-expressions!
A=1Ta, bl [c, d | [e]]]
is exactly the same (right from the Erlang parser onwards) as:
A =T[a, b, c, d, el

vmware

MORE CUT EXAMPLES Rabbit

» Records

-record(vector, { x, y, z }).

test() ->
GetZ = _#vector.z,
7 = GetZ(#vector { z =7 3}),
SetX = _#vector{x = _},
V = #tvector{ x =5, y =41} =
SetX(#vector{ y = 4 }, 5).

vmware

MORE CUT EXAMPLES Rabbit

» Case

F = case _ of
N when is_integer(N) -> N + N;

N -> N
end,
10 = F(5),
ok = F(ok).

vmware

CUT CONCLUSIONS Rabbit

v

Passing around funs is common: callbacks etc.

v

Construction of those funs is frequently partial application of
parameters to some simple expression.

v

Cut helps make those cases less verbose.

v

Cut also eases some pain of record syntax.

vmware

A LIGHT INTERLUDE: IMPORT_AS Rabbit

IMPORT AND IMPORT_AS ATTRIBUTES

» The -import (my_module, [£/3, g/2, h/4]) attribute
allows you to import my_module:f/3, my_module:g/2 and
my_module:h/4 into the current module.

» You can then treat them as normal functions, local to the
module.

A LIGHT INTERLUDE: IMPORT_AS Rabbit

IMPORT AND IMPORT_AS ATTRIBUTES

» The -import (my_module, [£/3, g/2, h/4]) attribute
allows you to import my_module:f/3, my_module:g/2 and
my_module:h/4 into the current module.

» You can then treat them as normal functions, local to the
module

» But you can’timport them with aliasing. Thus, this goes wrong

-import (my_mod, [size/1]).
-import (my_other_mod, [size/1]).

vmware

A LIGHT INTERLUDE: IMPORT_AS Rabbit

IMPORT AND IMPORT_AS ATTRIBUTES

» Solved!

-import_as ({my_mod, [{size/1, m_size}1})
-import_as({my_other_mod, [{size/1, o_size}]})

A LIGHT INTERLUDE: IMPORT_AS Rabbit

IMPORT AND IMPORT_AS ATTRIBUTES

> Solved!
-import_as ({my_mod, [{size/1, m_size}1})
-import_as({my_other_mod, [{size/1, o_size}]})
» Literally, we inject:
m_size(A) -> my_mod:size(A).
o_size(A) -> my_other_mod:size(A).

Thus you can use fun abstractions (or cuts!) on them, you can
export them, etc: they are real local functions.

vmware

DoO-NOTATION AND MONADS Rabbit

MONADS: INTRODUCTION

» Monads are widely used in Haskell, where they are essential in
order to control sequencing of operations which may have
side effects.

» They are not essential in Erlang.

» Monads provide very powerful control-flow and abstraction
mechanisms which are of benefit to all languages.

» In Erlang, essentially, it's a programmatic comma!

vmware

MONADS: INTRODUCTION Rabbit

Goal: control whether each statement is evaluated.

my_function() ->
A = foo(),
B
ok.

bar(A, dog),

MONADS: INTRODUCTION Rabbit

Goal: control whether each statement is evaluated.

my_function() ->
A = foo(),
comma() ,
B = bar(A, dog),
comma() ,
ok.

MONADS: INTRODUCTION Rabbit

Goal: control whether each statement is evaluated.

my_function() ->
comma (foo (),
fun (A) -> comma(bar(A, dog),
fun (B) -> ok end)).

MONADS: INTRODUCTION Rabbit

Goal: control whether each statement is evaluated.

my_function() ->
comma (foo (),
fun (A) -> comma(bar(A, dog),
fun (B) -> ok end)).

As defined, the comma/2 function is the monadic function »=/2. A
monad needs only three functions: »=/2, return/1 and fail/1.

vmware

Do-NOTATION Rabbit

I. MAKE SYNTAX LESS AWFUL

do([Monad ||
A <- foo(),
B <- bar(A, dog),
ok]) .

Readable, straightforward. Parse-transformer rewrites into:
Monad: ’>>=’(foo (),

fun (A) -> Monad:’>>=’(bar(A, dog),
fun (B) -> ok end)).

vmware

Do-NOTATION Rabbit

2. ALLOW MANY IMPLEMENTATIONS OF MONADS

» The do-block is parameterised by the type of monad we want
to use.

» Within a do-block, calls to return/1 and fail/1 are rewritten
to Monad:return/1 and Monad:fail/1.

THE IDENTITY MONAD Rabbit

COMMAS, AS WE KNOW THEM

-module (identity_m) .
-behaviour (monad) .
-export([’>>=’/2, return/1, fail/1]).

’>>=’ (X, Fun) -> Fun(X).
return (X) -> X.
fail (X) -> throw({error, X}).

vmware

THE IDENTITY MONAD Rabbit

COMMAS, AS WE KNOW THEM

-module(identity_m) .
-behaviour (monad) .
-export([’>>=’/2, return/1, fail/1]).

’>>=2 (X, Fun) -> Fun(X).
return (X) -> X.
fail (X) -> throw({error, X}).

do([identity_m ||
A <= foo(),
B <- bar(A, dog),
ok]) .

vmware

THE IDENTITY MONAD Rabbit

COMMAS, AS WE KNOW THEM

-module(identity_m) .
-behaviour (monad) .
-export([’>>=’/2, return/1, fail/1]).

’>>=2 (X, Fun) -> Fun(X).
return (X) -> X.
fail (X) -> throw({error, X}).

identity_m:’»=’(
foo(), fun (A) -> identity_m:’»=’(
bar(A, dog), fun (B) -> ok end)).

vmware

THE IDENTITY MONAD Rabbit

COMMAS, AS WE KNOW THEM
-module(identity_m) .
-behaviour (monad) .

-export([’>>=’/2, return/1, fail/1]).

’>>= (X, Fun) -> Fun(X).

return (X) -> X.

fail (X) -> throw({error, X}).
A = foo(),

B = bar(A, dog),

ok.

vmware

THE MAYBE MONAD Rabbit

MAYBE CONTINUE?

-module (maybe_m) .
-behaviour (monad) .
-export([’>>=’/2, return/1, fail/1]).

’>>=’({just, X}, Fun) -> Fun(X);
’>>=’ (nothing, _Fun) -> nothing.

return(X) -> {just, X}.
fail(_X) -> nothing.

vmware

THE MAYBE MONAD Rabbit

MAYBE CONTINUE?
-module (maybe_m) .
-behaviour (monad) .

-export([’>>=’/2, return/1, fail/1]).

’>>=’({just, X}, Fun) -> Fun(X);
’>>=’ (nothing, _Fun) -> nothing.

return(X) -> {just, X}.
fail(_X) -> nothing.

Do not continue if an expression returns nothing.

vmware

THE MAYBE MONAD Rabbit

if_safe_div_zero(X, Y, Fun) ->
do ([maybe_m | |
Result <-
case Y == 0 of
true -> fail("Cannot divide by zero");
false -> return(X / Y)
end,
return(Fun(Result))]).

THE MAYBE MONAD Rabbit

if_safe_div_zero(X, Y, Fun) ->
do ([maybe_m | |
Result <-
case Y == 0 of
true -> fail("Cannot divide by zero");
false -> return(X / Y)
end,
return(Fun(Result))]).

{just, 6} = if_safe_div_zero(10, 5, _+4)

vmware

THE MAYBE MONAD Rabbit

if_safe_div_zero(X, Y, Fun) ->
do ([maybe_m | |
Result <-
case Y == 0 of
true -> fail("Cannot divide by zero");
false -> return(X / Y)
end,
return(Fun(Result))]).

{just, 6} = if_safe_div_zero(10, 5, _+4)

nothing if_safe_div_zero(10, 0, _+4)

vmware

THE ERROR MONAD Rabbit

JUST LIKE MAYBE BUT KEEP THE ERROR

-module(error_m) .
-behaviour (monad) .
-export([’>>=’/2, return/1, fail/1]).

’>>=’({error, _Err} = Error, _Fun) -> Error;
»>>=7 ({ok, Result}, Fun) -> Fun(Result);
»>>=7(ok, Fun) -> Fun(ok).

return(ok) -> ok.
return(X) -> {ok, X}.
fail(X) -> {error, X}.

vmware

THE ERROR MONAD Rabbit

INVISIBLE ERROR HANDLING

Result = do([error_m ||
Hdl <- file:open(Path, Modes),

Data
file

file
file
file

<- file:read(Hdl, BytesToRead),

:write(Hdl, DataToWrite),
file:

sync (Hd1),

:close(Hdl),
:rename (Path, Path2),
:delete(Path),

return(Data)]) .

vmware

THE ERROR MONAD Rabbit

INVISIBLE ERROR HANDLING

Result = do([error_m ||
Hdl <- file:open(Path, Modes),
Data <- file:read(Hdl, BytesToRead),
file:write(Hdl, DataToWrite),
file:sync(Hdl),
file:close(Hdl),
file:rename(Path, Path?2),
file:delete(Path),
return(Data)]).

Result is always either {ok, Data} or {error, Reason},
regardless of where the failure happened. How many case
statements would you need to achieve the same without monads?!

vmware

(GOING FURTHER: THE STATE TRANSFORMER MhRabbit

» Monadic transformers embue monads with additional
functionality.

» Imagine a monad within a monad, where the inner monad can
reach out and interact with the outer monad.

» One such outer monad is the State transformer.

» This allows manipulation of state: put sets the current state,

whilst get returns the current state. modify takes a function
that takes the state and returns a new state.

vmware

(GOING FURTHER: THE STATE TRANSFORMER MhRabbit

MANY NUMBERED VARIABLES: VERY COMMON, AND VERY
UNPLEASANT

Statel = init(Dimensions),

State2 = plant_seeds(SeedCount, Statel),

{DidFlood, State3} = pour_on_water(WaterVolume, State2),
State4 = apply_sunlight(Time, State3),

{DidFlood2, Stateb} = pour_on_water (WaterVolume, State4),
{Crop, State6} = harvest(State5),

vmware

(GOING FURTHER: THE STATE TRANSFORMER MhRabbit

AFTER APPLYING STATE TO IDENTITY

StateT = state_t:new(identity_m),

SM = StateT:modify(_),

SMR = StateT:modify_and_return(_),

StateT:exec(

do([StateT ||

StateT:put(init (Dimensions)),
SM(plant_seeds(SeedCount, _)),
DidFlood <- SMR(pour_on_water(WaterVolume, _)),
SM(apply_sunlight(Time, _)),
DidFlood2 <- SMR(pour_on_water(WaterVolume, _)),
Crop <- SMR(harvest(_.)),
1), undefined).

vmware

(GOING FURTHER: THE STATE TRANSFORMER MhRabbit

AFTER APPLYING STATE TO IDENTITY

StateT = state_t:new(identity_m),

SM = StateT:modify(_),

SMR = StateT:modify_and_return(_),

StateT:exec(

do([StateT ||

StateT:put (init(Dimensions)),
SM(plant_seeds(SeedCount, _)),
DidFlood <- SMR(pour_on_water(WaterVolume, _)),
SM(apply_sunlight (Time, _)),
DidFlood2 <- SMR(pour_on_water (WaterVolume, _)),
Crop <- SMR(harvest(_)),
1), undefined).

Look! No numbered state variables!

DO CONCLUSIONS Rabbit

v

Monads are very powerful and flexible.

v

Takes some practise to get used to, and harder due to lack of
useful type checker.

Do-notation essential to making monads at all pleasant.

v

v

Implementation very similar to Haskell, so mechanical
translation of Haskell's libraries quite possible.

vmware

ERrRLANDO: THE FUTURE Rabbit

WHAT’S COMING NEXT?

» Type classes (value based dynamic dispatch)
» Ability to define infix functions

» Convenience mechanisms for records, e.g.
#state { foo, bar, baz }
=#state { foo = Foo, bar = Bar, baz = Baz }

» Whole module importing with aliasing

vmware

ERrRLANDO Rabbit

WHERE CAN I GET THIS MAGICAL SAUCE?
http://hg.rabbitmqg.com/erlando or
http://github.com/rabbitmq/erlando

THE END Rabbit

Thank you

Questions?

