Erlang Factory Lite Paris

- 23S0NS leameo

How we use Erlang to analyze millions of messages per day

A TeW WOrds apout US

What we do with Erlang

A few words about us

Semiocast processes social media conversations to
provide analytics and market research insights

A |"l|...,..-..-.Jl..l...-.
- |
nl“l._“ I PSS

"~ ——

Semiocast’s offer

Quantitative studies
ad hoc

Qualitative studies
ad hoc

Monitoring

Tools

Barometers

Shares of social media conversations
Sentiment analysis and clustering
Topic identification

Ad hoc guantitative indicators

Consumer insights

Verbatim research

Clustering of conversations

Mapping of communities and influence analysis

Enumeration of social media conversation spaces
Real-time alerts

Daily/Weekly/Monthly reports
Crisis monitoring

Social media monitoring platform (Semioboard)
Technology as a service (API)

. semoboard

Semioboard

Semioboard

Make sense of social media conversations

Quick demo
L'Oréal

by Semiocast

O
O
O
oV
QO

Sem

Semioboard

Make sense of social media conversations

feature demo:
smart buzz tagging

by Semiocast

Live analysis of comments on TV debates

i Classement et distribution du volume de tweets total pendant le débat | Le + de twittos... 2 3 s 3 O |
o

| Volume total
> F. Hollande
R [111 11| ([[T LTI |
——

n*1 ! F. Hollande
| ~10508msg. ;__,...,___,___,.II,I.-,.I-,'IIF--.......“--'
[n*2 : S. Royal
~ 9749 msg. ,___,___,l._,___,lll,ll-,.-....-l,l-ll-l.lln.lnn,lll
| n"3 : M. Aubry I
| ~7514msg. _.'___,___,___,___,___l I,l--,.....l-,-l-,--l.
' n*4 : A. Montebourg
| ~5551msg. '__“l“l.‘_._'___P_q__.'.Il]I-,.-l,-ll.lll.
?n‘s : M. Valis I. _
b | R S ,II RN Ene Bl n°4 : A. Montebourg (1877 twittos) S emiocast
'n°6 : J.-M. Baylet II n°5 : M. Valis (1858 twittos)
~4172msg. : _'._ﬁ_l Y [S W [V1 T - pour Ruesg
{ 20:15 2045 21:15 2145 22:115 2245 2315 D e ey ARl |

oW We ended up using
—ang

How we ended up using Erlang

Discovered Erlang when getting WiFi rabbits to
talk to each other over XMPP (ejabberd) in 2007

Taught OCaml in 2004 '

Three reasons why we chose Erlang :
- hot code change and inspection
- fault-tolerance

- happy to do functional programming
(gave us a break from Java and C++)

How we use Erlang

{release, {"Semiocast OTP", "1352"}, {erts, "5.8.4"},
[
% erts 5.8.4
{kernel, "2.14.4"},
{stdlib, "1.17.4"},
{mnesia, "4.4.18"},

{inets, "5.5.2"},

{sasl, "2.1.9.3"},
{crypto, "2.0.2.1"},
{snmp, "4.19"},

{otp_mibs, "1.0.6"},
{ssl, "4.1.5"},

[] []
4 a I {public_key, "0.12"},
- 47 ications i
pp {compiler, "4.7.3"},

{runtime_tools, "1.8.5"},
{syntax_tools, "1.6.7"},

% Other 1libs

- 100K lines of Erlang (without tests)

{nprocreg, "0.1"},
{simple_bridge, "1.0.2"},

% Semiocast
{analyzer, "22", load},

- 11K lines of C/C++ (mostly glue)

{aspell, "4", load},
{binlog, "26", load},
{certificate_authority, "8", load},
{chasen, "11", load},

n
{chinese_segmenter, "1", load},
- I I IeS O ava Iue {commonlib, "250", permanent}, % always start commonlib.
{ctl, "29", permanent}, % always start ctl.

{dashboard_engine, "55", load},
{dashboard_storage, "56", load},
{dashboard_website, "226", load},
{developer_website, "36", load},
{engine, "455", load},

{gate, "79", load},

{geodb, "5", load},

{geoip, "2", load},
{image_magick, "8", load},
{kdtree, "3", load},

{kqueue, "1", load},
{link_grammar_parser, "12", load},
{memcached, "5", load},

~OU ungraduated applications for = o e

pgsql, "2", load},
{pubsubhubbub, "4", load},
{qr_website, "1", load},
{re2, "1", load},

{s_http, "42", load},

[]
{setproctitle, "2", permanent}, % always start setproctitle.
— I {sink, "15", load},
{sqlite, "9", load},

{storage, "226", load},
{svg, "12", load},

{svm, "1", load},
{text_ident, "27", load},

. - {text_proc, "62", load},
f— {titema_website, "7", load},
{url_server, "8", load},
{uuid, "6", load},
{web_common, "14", load},
{web_gate, "8", load},
{web_storage, "5", load},

{wikimedia, "6", load}

- web-based/command line tools
that run on dev machines

A few things we wish we had known about Erlang

A Tew Things we wisn we
Nad KNOWN aoout =rnang

A few things we wish we had known about Erlang

Mistake #1:

Creating an erlang process to do a lot of work

- processes should spend most of their time
waiting for messages (gen server), or do some
intensive work and quickly exit when done

(spawn 11nk)

- when required, benchmark, as message passing
with the worker process can prove expensive

Self = self(),

spawn_Llink(fun() -> Self ! {language, analyze language(Text, MDO, Mode)} end),
spawn_Llink(fun() -> Self ! {location, analyze location(MDO®, Mode)} end),

{NProcessedlLang, Language} =
{NProcessedlLoc, Location} =

receive {language, ResplLa} -> ResplLa end,
receive {location, ResplLoc} -> ResplLoc end,

{NProcessedLang, Language}

FaSteI" {NProcessedLoc, Location};

analyze language(Text, MDO, Mode),
analyze location(MDO, Mode),

A few things we wish we had known about Erlang

Mistake #2:

Creating a lot of processes for parallelized

computing

- having more worker processes than schedulers
does not make sense

- It can actually hurt, because processes waiting
for a reply may not have it in time and will fall

with a timeout

Thinking OTP

Thinking OTF

Thinking OTP

Mistake #3:
Starting processes outside the supervision tree

- gen server & co. should be used everywhere,
except for very short lived processes (that won’t
be upgraded)

- Every gen server should be started from a
supervisor

- A real-world supervision design requires
process flag(trap exit, true),
monitor/2 and 1ink/1, as well as some
thinking

Thinking OTP

Mistake #4:

Thinking obscure comments in the documentation
do not really apply

- When in doubt, source code is handy, and helps
figuring out when we really need to go off the rule

As a rule of thumb Modules should be a list with
one element [Module], where Module is the callback

module, if the child process is a supervisor,
gen_server or gen_fsm

erl -man supervisor

gen_manager is a
gen_server with a callback module
handling code_change messages

(here, user_manager) UserManagerSpec = {user_manager, % 1d o .
{user_manager, start link, []}, % init function
\\\\\\\\\\ transient, % restart children that crash

\\\SL?SHUTDOWN_DELAY, worker,
[gen _manager, user_manager] % modules

'

Thinking OTP

Mistake #5:

Putting everything in a single virtual machine (node) per
server

- Virtual machines may crash

- Code changes can fail and take down the whole
node

- It’s better to separate critical code

- even per server if a crashing node can take a huge
amount of RAM and make other nodes swap

Nterfacing with foreign code

Six ways to interface foreign code with Erlang:

- Linked-In drivers

- External drivers

- NIFs

- 0s:cmd/1

- C-based distributed node

- Java-based distributed node (jinterface)

We tried them all...

...and are looking forward to future extensions to the
native interface (R15%)

Method We use/used for
- aspell
Linked-in drivers |- kqueue (FreeBSD/MacOS X kgqueue binding)
- SQLite
- ImageMagick
External drivers - GeolP
- WebKit
- uuid
NIFs - re2 (linear time bound replacement for re)
- bzip2
_ - OpenSSL
0s:cmd/1 - Batik (svg rasterizer in Java)
C—base;jodollsetnbuted - ruby (we actually bound Rails websites with Erlang at some point)
jinterface - OpenNLP

Mistake #6:

Using linked-in drivers for open source code that
could crash/abort

E.g.: ImageMagick will abort on bad input

- External drivers are more suitable when external
library is large, crash-prone or could leak
(sometimes, the leak is in the glue...)

- Passing pointers is possible but requires some
logic, typically binding a pointer to the port

Mistake #7;
Using linked-in drivers for I/O intensive code
E.g.: sqglite

- Linked-in driver code is executed within a
scheduler thread. Running for too long will starve
other processes that will timeout, waiting for
messages

- Theoretically, we can use async threads (and we
do with sqlite). However, enabling async threads
(+A) has a huge impact on built-in I/O drivers

- Performance could be worse with external
drivers

Erlang technologies we fewe hate

—rlang tecnnologies we 1ove

Erlang technologies we fewe hate

dialyzer
- part of our compilation cycle

- found many bugs, typically inconsistencies between
callers and callees

- starting with - spec when defining exported funs

We wish it would be fixed/improved:

- horribly slow

- sometimes blind

- hard to understand

- fails on code_change code

- useless warnings that cannot be disabled

Erlang technologies we fewe hate

SNMP

- makes It really easy to integrate erlang nodes within a
monitoring solution (we use nagios and munin)

—

)

OTP installed with --enable-native-lib and all our code
compiled with +native

- helps with CPU-bound work (including dialyzer...)

- most patches we submitted were HiPE-related

We are also grateful to the authors of:
erlsom, mochiweb, nitrogen, zotonic...

nank you |

paul@semiocast.com

