Functions +
Messages + Concurrency

= Erlang

Joe Armstrong

Concurrent

programming Functional
programming
Concurrency /

Oriented
programming

Fault
tolerance

Problem domain

Highly concurrent (hundreds of thousands of parallel
activities)

Real time

Distributed

High Availability (down times of minutes/year - never down)
Complex software (million of lines of code)

Continuous operation (years)

Continuous evolution

In service upgrade

Erlang

Very light-weight processes

Very fast message passing

Total separation between processes
Automatic marshalling/demarshalling
Fast sequential code

Strict functional code

Dynamic typing

Transparent distribution

Compose sequential AND concurrent code

Concurrent

programming Functional
programming
Concurrency /

Oriented
programming

Fault
tolerance

Fraction of Chip reachable in one clock cycle

\ 100%

T T T[T T T T [T T T T [TTTT]

2000 2005 2010 2015 Year

25 18 13 10 070 030 0035 Feanue zize(micion)

[source] Erik Hagersten http://www.sics.se/files/projects/
multicore/day2007/ErikH-intro.pdf

Clock Frequency

CPU Clock Frequancy

&

» .

100 | 1 | | 1 |
94 96 98 00 02 04 06 08

Year

Clock frequency trend for Intel Cpus (Linux Journal)

Read: Clock rate verses IPC. The end of the road for
Conventional Microarchitectures. Agarwal et.al 2000

intel Xeon, 3.6 GHz __ 64-bit intel Xeon, 3.6 GHz
o 6505

AMD Opteron, 2.2
intel Pantium 4,30 GHz

o

PowerPC 604, 0.1GHz g% 1
Alpha 21064, 0.2 GHz

3

g
g
¢

VAX-11/780 _,.¢*""
/ 25

Pidd
Ld
“

A 1 ok

1980 1982 1984 1988 1990 1992 1994 1096

Figure 1.1 Growth in processor performance since the mid-1980s.

Due to hardware changes:

Each year your sequential
programs will go slower

Each year your concurrent
programs will go faster

2005 - 2015
Paradigm shift in

CPU
architectures

Three New

Architectures

ONE - Multi core

. DP IA Server (1 socket populated)
Pro;ected mean of == == DP IA Server (2 sockets populated)

several benchmarks Assumed Niagara (1 socket)
Possible Niagara (my analysis)

- Keifer
Niagara I1I?—

£
LY
[=%
Rad
v
v
L
v
v
o
[=}
=
v
v
E
=

2006 2007 2008 2009 2010
Dempsey/Woodcrest Clovertown MHarpertown Gainstown Gulftown Next

SLI TWO -

 TECHNOLOGY G P U S

RVIDIA

<

NVIDIA GPU Pixel Shader GFLOPS @z
havix

G71
250 ® GPU Observed GFLOPS
G70-512

200 a7 .

Cell Computers

150

©£2006 Soay Computer Enter
Design and specifications arq

100
50

2005 2006

'ﬁ‘i&;ﬁﬂﬁﬁ{m_

THREE - network on
Intel Polaris - 2007 Chlp (NOC)

1 Tflop at 24 Watts

ASCTI RED- 1997

- 1997

- First machine over 1 Tera
Flop

- 2,500 sq ft floor space
104 cabinets

- 9326 pentium pro

processors

2 cores won't hurt you

4 cores will hurt a little

8 cores will hurt a bit

16 will start hurting

32 cores will hurt a lot (2009)

1 M cores ouch (2019)
(complete paradigm shift)

1997 1 Tflop = 850 KW
2007 1 Tflop = 24 W (factor 35,000)
2017 1 Tflop = ?

Goal

Make my program run N times faster on an
N core CPU with

no changes to the program

no pain and suffering

Can we do this?

y es Sometimes (often)

Due to hardware changes:

Each year your sequential
programs will go slower

Each year your concurrent
programs will go faster

Concurrent

programming Functional
programming
Concurrency /

Oriented
programming

Fault
tolerance

To make
a fault-tolerant system
you need at least

Two

computers

If one computer crashes
the other must take over

J

= No Shared data
= Distributed programming
= Pure Message passing

To do fault tolerant computing we
need at least two isolated computers

o O

= Concurrent programming
with pure message passing

To do very fault tolerant computing
we heed lots of isolated computers

= Scalable

Fault tolerance
Distribution
Concurrency

Scalability

are inseparable

Concurrent

programming Functional
programming
Concurrency /

Oriented
programming

Fault
tolerance

Two models of Concurrency

Shared Memory
- mutexes
- threads
- locks

Message Passing
- messages
- processes

Shared
Memory

Programming

Shared memory

Problem 1

Your program
crashes in

the critical region
having corrupted
memory

.

Problem 2

? - Australia

A

Where do we (physically) locate the
shared memory?

Impossible to get low-latency and make
consistent (violates laws of physics)

Thread Safety

Erlang programs are

automatically thread
safe if they don't use
an external resource.

Sharing is the
property that
prevents

fault tolerance
and
Thread safety

Message
Passing

Concurrency

No sharing

Pure message passing

No locks

Lots of computers (= fault tolerant
scalable ...)

Functional programming (no side
effects)

What is COP?

@ Machine

] Process

R ——

Message

Large number of processes
* Complete isolation between processes
" Location transparency
" No Sharing of data
" Pure message passing systems

Why is COP nice?

We intuitively understand concurrency
The world is parallel
The world is distributed

Making a real-world application is based on
observation of the concurrency patterns and
message channels in the application

Easy to make scalable, distributed applications

Concurrency Oriented Programming

0 A style of programming where
concurrency is used to structure the

application

" Large humbers of processes

1 Complete isolation of
processes

" No sharing of data

o Location transparency

" Pure message passing

My first message is that
concurrency
is best regarded as a program
structuring principle”

Structured concurrent programming
- Tony Hoare

Examples of COP architectures

remember - no shared memory
- pure message passing

Email

Google - map - reduce (450,000
machines)

People (no shared state, message
passing via voiceGrams, waving
arms, non-reliable etc.)

Concurrent

programming Functional
programming
Concurrency /

Oriented
programming

Fault
tolerance

O)
=
-
-
©
| .
o)
O
| S
Q.
©
C
O
e
O
C
-
LL

Scary stuff

1d
{x:BNA}F2:BAA 2 BAAYE 2

- .-"_—EQ
{". B A -—1} F~.snd: A
A Id
{z:BNA}F (2.snd, 2.fst) : ANDB {y:Btry:B {r A} b o

{} A2 (z.snd, 2.fst) : (BNA) — (AN DB) {r: A, y: B} {y,) : BNA
{x: A, y: B} F (A2 {z.snd, 2.fst))({y, x)) : ANDB

Id

{ly:B}+y: B

=

Figure 6: A reduction sequence with type derivations

Or easy?

fac(0) -> 1;
fac(N) -> N*fac(N-1).

Why is FP good?

0 Side effects are strictly controlled

If you call the
same function twice with
the same arguments
it should return the same value

Referential transparency

A

In,S Out,S'

Functional programming languages

FLPs carry state with them
wherever the flow of control
goes. Different FPLs provide

different notations and
mechanisms for hiding this
from the user.

In Erlang we hide the state
in a process. In Haskell in a
monad

FLPs have are based on a formal
mathematical model
Lambda calculus (Pi calc, CSP)

Why is this important?

Compositional properties

Output of one function must be input to next
f(g(h(i(k(X)))))

Echo “foo" | k|i|h|g]|f

No mutable state means nothing to lock and
automatic thread safety when parallelised

Can reuse pure functions

FP is on the rise

1 Haskell

1 Erlang
1O Caml, F#

BAD STUFF
Very very bad]

Threads /

Sharing ,

Mutexes - Locks

Synchronized methods

Mutable state _

Mutable state is the root of all evil

FPLs have no mutable state

GOOD STUFF

Processes
Controlled side effects
Pure functions

Copying
Pure Message passing
Failure detection

Concurrent

programming Functional
programming
Concurrency /

Oriented
programming

Fault
tolerance

Programming
Erlang .o

Joe Armstrong

Erlang in 11 Minutes

Sequential Erlang 5 examples
Concurrent Erlang 2 examples
Distributed Erlang 1 example
Fault-tolerant Erlang 2 examples
Bit syntax 1 example

Sequential Erlang

Factorial -module (math) .
-export([fac/1]) .
Dynamic types
Pattern matching fac(N) when N > 0 -> N*fac(N-1);
No mutable data fac(0) > 1

structures
> math:fac(25).

Binqry Tree Search 15511210043330985984000000

lookup (Key, {Key, Val, , }) -> {ok, Val};
lookup (Key, {Keyl,Val,S,B}) when Key < Keyl ->
lookup (Key, S);
lookup (Key, {Keyl, Val, S, B})->
lookup (Key, B) ;
lookup (key, nil) ->
not found.

Sequential Erlang

append

sort

append ([H|T], L) -> [H|append (T, L)];
append ([], L) -> L.

sort ([Pivot|T]) ->
sort([X]||X <- T, X < Pivot]) ++
[Pivot] ++
sort([X||X <- T, X >= Pivot]);,
sort([]) -> [I].

> Adder = fun(N) -> fun(X) -> X + N end end,
#Fun

> G = Adder(10).

#Fun

> G(5).

15

Concurrent Erlang

SPGM”\ Pid = spawn(fun() -> loop(0) end)

id !
send Pid ! Message,

receive | receive

Messagel ->
Actionsl;

Message2 ->
Actions2;

after Time ->

TimeOutActions
end

The concurrency is in the language NOT the OS

Distributed Erlang

Pid = spawn (Fun(@Node)

alive (Node) ,

not alive (Node)

Fault-tolerant Erlang

case (catch foo(A, B)) of
{abnormal casel, Y} ->

{ '"EXIT', Opps} ->
val ->

end,

foo(A, B) ->

throw ({abnormal casel,

Monitor a process

process flag(trap exit, true),
Pid = spawn link(fun() -> ... end),
receive

{'EXIT', Pid, Why} ->

Bit Syntax - parsing IP datagrams

—define (IP_VERSION, 4).

-define (IP_MIN HDR LEN,5).

DgramSize = size (Dgram),

case Dgram of

<<?IP_VERSION:4, HLen:4,
SrvcType:8, TotLen:16, ID:16, Flgs:3,
FragOff:13, TTL:8, Proto:8, HdrChkSum:16,
SrcIP:32, DestIP:32, Body/binary>> when
HLen >= 5, 4*HLen =< DgramSize ->

OptsLen = 4* (HLen - ?IP MIN HDR LEN),

<<Opts:OptsLen/binary,Data/binary>> = Body,

This code parses the
header and extracts
the data from an IP

protocol version 4

datagram

Bit syntax - unpacking MPEG data

An MPEG header starts with an 11-bit frame sync consisting of eleven
consecutive 1 bits followed by information that describes the data that
follows:

AAAAAAAA AAABBCCD EEEEFFGH IIJIKLMM

AAAAAAAAAAA The sync word (11 bits, all ones)
BB 2 bits 1s the MPEG Audio version ID
cc 2 bits 1s the layer description

D 1 bit, a protection bit

Download mp3_sync.erl

decode_header(<<2#11111111111:11,B:2,C:2, D:1,E:4,F:2,G:1,B1ts:0>>) ->
Vsn = case B of

0 -» {2,5};
1 -> exit(badVsn);
2 -> 2;
3 ->1
end,

The magic lies in the amazing expression in the first line of the code.
decode_header(<<2#11111111111:11,B:2,C:2, D:1,E:4,F:2,G:1,B1ts:9>>) ->

This pattern matches eleven consecutive 1 bits,! 2 bits into B, 2 bits
into C, and so on. Note that the code exactly follows the bit-level spec-

ification of the MPEG header given earlier. More beautiful and direct
code would be difficult to write.

Some code

loop() ->
receive
{email From,Subject, Text} = Email ->
{ok, S} = ("inbox" [append,write]),
io:format(S, "~p.~n" [Email]),
file:close(S);
{msg, From, Message} ->
io:format("msg (~s) ~s~n", [From, Message]):
{From, get, File} ->
From | file:read_file(File)
end

loop().
Mike ! {email, " joe", "dinner", "see you at 18.00"}.

Helen ! {msg, "joe", "Can you buy some milk on your way
home?"}

file://localhost/
file://localhost/

Programming Multicore computers is difficult
because of shared mutable state.

Functional programming languages have no shared
state and no mutable state

Erlang has the right intrinsic properties for
programming multicore computers (concurrency
maps to the multiple CPUs, non-mutability means we

don't get any problems with memory corruption)

Chapter 20

Here's the good news for Erlang programmers:

Your Erlang program might run N times faster on an N core processor—
without any changes to the program.

If. that 1s. you've followed a simple set of rules....

If yvou want your application to run faster on a multicore CPU, you'll
have to make sure that it has lots of processes, that the processes don’t
interfere with each other, and that you have no sequential bottlenecks
in your program.

If instead you've written vour code in one great monolithic clump of
sequential code and never used spawn to create a parallel process, your
program might not go any faster.

Don’t despair: even if your program started as a gigantic sequential pro-
gram there are several rather simple things we can do to the program
to parallelize it.

In this chapter we’ll look at the following topics.

1. What we have to do to make our programs run efficiently on a
multicore CPU.

2. How to parallelize a sequential program.

. The problem of sequential bottlenecks.

Multicore Perfcrmance on a SUN Fire T2000 Server

x-*_-x"'x‘q(' R e
oy M Ko g e K e
3 KX »

D6 M
_,x--"‘-x

Number of CPUs

Figure 20. I: Speedup on multicore CPU
D S D D 3 D o D S S S BB)

{Key, Val}

Key, Val
{) } @

{Kev, Val}

M = Map process

R = Reduce process {Key. Val}

Figure 20.2: Mapreduce

- Use "lots” of processes

- Avoid sequential bottlenecks

- Use “large computation”
small data transfer (if

possible)
- New abstractions (pmap,
mapreduce)

Commercial projects

Ericsson AXD301 (part of "Engine")

Ericsson GPRS system

Alteon (Nortel) SSL accelerator

Alteon (Nortel) SSL VPN

Teba Bank (credit card system - South Africa)
T-mobile SMS system (UK)

Kreditor (Sweden)

Synapse

Tail-f

jabber.org /uses ejabberd)

Twitter (uses ejabberd)

Lshift (RabbitMQ) AMQP (Advanced Message Queuing protocol)

Finally

We've known how to program parallel
computers for the last twenty years

We can make highly reliable fault tolerant
distributed real-time systems

ww.erlang.org

Questions?

