
DIY Refactorings in
Wrangler

Huiqing Li
Simon Thompson

School of Computing
University of Kent

Overview

Refactoring.

Wrangler.

DIY Elementary Refactorings.

DIY Code Inspections.

DIY Composite Refactorings.

Demo ...

Refactoring

Change how a program works without
changing what it does.

RefactorModify

Why Refactor?
• Extension and reuse.

– function extraction, generalisation, ...

• Correct a syntactic decision made earlier.
– renaming, re-arrange arguments, relocate functions,

map to list comprehension, ...

• Counteract decay.
– clone elimination, module restructure, ...

• API migration.
– regexp → re, lists:keysearch/2 → list:keyfind/2, ...

How to Refactor?

• By hand … using an editor.
– flexible, but error-prone.

– infeasible in the large.

• Tool support.
– scalable to large codebase.

– quick and reliable.

– undo/redo.

Wrangler

A Refactoring and code smell inspection
tool for Erlang

Wrangler in a nutshell

• Automate the simple things, and provide
decision support tools otherwise.
• Embedded in common IDEs: (X)Emacs, Eclipse.

• Handle full language.
• Faithful to layout and comments.

• Undo
• Build in Erlang, and apply the tool to itself.

Wrangler

Wrangler

Basic Refactorings and Code inspections

Code
clone detection

and removal

Module
structural

improvement

Demo

Wrangler

So what are the limitations?
• Only a set of `core' refactorings supported.

• Only elementary refactorings are supported, i.e.,
batch refactorings are not supported.

• Wrangler is designed as a black-box.

Wrangler

Basic Refactorings and Code inspections

Code Clone
Detection

and
Removal

Module
structural

improvement

Template- and
rule-

base API for DIY
basic refactorings/
code inspections

 A DSL for DIY
composite

refactorings

Wrangler

Wrangler
built-in

refactorings

Refactorings
contributed by

users

User's own
refactorings +

+

DIY Basic Refactorings

Design criteria
•We assume you can program Erlang …

 … but don't want to learn the internal syntax or
 details of our representation and libraries.

• We aim for simplicity and clarity.

DIY elementary refactorings

16

Templates describe code fragments

Rules describe transformations

Context
available

for condition
analysis

Traversals
describe how

rules are
applied

Erlang
Behaviour

for
refactoring

Templates
• Templates are enclosed in the ?T macro call.

• Meta-variables in templates are Erlang variables
end in @, e.g. F@, Args@@, Guards@@@.

• Meta-atoms in templates are Erlang atoms end in @,
e.g. f@.

Templates
• Examples
?T(''F@(1, 2)'') F@ matches a single element.
?T(''spawn(Args@@)'') Args@@ matches a sequence of

 elements of some kind.

?T("f@(Args@@)when Guard@@-> Body@@;") matches
a function clause.
?T("f@(Args@@)when Guard@@-> Body@@.") matches
a function definition of a single function clause.

Rules

 rule({M,F,A}, N) ->
 ?RULE(?T("F@(Args@@)"),
 begin
 NewArgs@@=delete(N, Args@@),
 ?TO_AST("F@(NewArgs@@)")
 end,
 refac_api:fun_define_info(F@) == {M,F,A}).

 delete(N, List) -> … delete Nth elem of List …

?RULE(Template, NewCode, Cond)
The old code, the new code and the pre-condition.

Information in the AAST
Wrangler uses the syntax_tools AST, augmented with
information about the program semantics.

API functions provide access to this.

Variables bound, free
and visible at a node.

Location information.

All bindings (if a vbl).

Where defined (if a fn).

Atom usage info: name,
function, module etc.

Process info …

Collecting Information

 ?COLLECT(Template, Collector, Cond)

• The template to match.

• In information to extract (“collect”).

• Condition on when to collect information.

Collecting information
 ?COLLECT(?T(“f@(Pars@@) when G@@ -> B@@;”),

 lists:nth(Nth, Pars@@),

 refac_api:fun_def_info(F@) =={M, F, A})

 ?COLLECT(?T(“Body@@, V@=Expr@, V@”)”),
 {_File@, refac_api:start_end_loc(_This@)},

 refac_api:type(V@) == variable andalso
 [_] == refac_api:refs(V@))

_File@ current file _This@ subtree matching ?T(…)

 Collect the nth parameters

 Unnecessary match

AST Traversals

?FULL_TD_TP(Rules, Scope)

• Traverse top-down.

• At each node, apply first of Rules to succeed …

• TP = “Type Preserving”.

AST Traversals

?STOP_TD_TU(Collectors, Scope)

• Traverse top-down.

• … apply all of the collectors to succeed…

• TU = “Type Unifying”.

Generic Refactoring Behaviour
Behaviour gen_refac encapsulates what a

refactoring needs to provide

Callback functions:
• input_par_prompts/0: prompts for interactive input.

• select_focus/1: what to do with focus information.

• selective/0: selective refactoring or not.

• pre_cond_check/1: check pre-conditions.

• transform/1: if the pre-condition is ok, do the transformation.

DIY Refactorings In Wrangler
-module(refac_replace_append). %%module name is also refactoring name.

-include_lib(“wrangler/lib/wrangler.hrl”)

-behaviour(gen_refac).

-export([input_par_prompts/0, select_focus/1,check_pre_cond/1,
 selective/0,transform/1]). %% Callback functions.

input_par_prompts() -> []. %% No user input is needed.

select_focus(_Args) -> {ok, none}. %% No focus selection is need.

check_pre_cond(_Args) -> ok. %% No pre-condition.

selective() -> true. %% Allow selective refactoring.

transform(_Args=#args{search_paths=SearchPaths})->
 ?FULL_TD_TP([rule_replace_append()], SearchPaths).

rule_replace_append() ->
 ?RULE(?T("F@(L1@, L2@)"), ?TO_AST("L1@++L2@"),
 {lists,append,2} == refac_api:fun_def_info(F@)).

DIY Refactorings In Wrangler
rule1({M,F,A}, I, J) -> %% transform the function definition itself.
 ?RULE(?T("f@(Args@@) when Guard@@ -> Bs@@;"),
 begin
 NewArgs@@=swap(Args@@,I,J),
 ?TO_AST("f@(NewArgs@@) when Guard@@->Bs@@;")
 end,
 api_refac:fun_define_info(f@) == {M, F, A}).
rule2({M,F,A}, I, J) -> %% Transform the different kinds of function applications.
 ?RULE(?FUN_APPLY(M,F,A),
 begin
 Args=api_refac:get_app_args(_This@),
 NewArgs=swap(Args, I, J),
 api_refac:update_app_args(_This@,NewArgs)
 end, true).
rule3({_M, F, A}, I, J) -> %% transform the type spec.
 ?RULE(?T("Spec@"), api_spec:swap_arg_types_in_spec(_This@, I, J),
 api_spec:is_type_spec(Spec@, {F, A})).

 Transformation rules for swapping arguments

DIY Code Inspections In Wrangler

calls_to_specific_function(input_par_prompts) ->
 ["Module name: ", "Function name: ", "Arity: "];

calls_to_specific_function(_Args=#args{user_inputs=[M,F,A],
 search_paths=SearchPaths}) ->
 {M1, F1, A1}={list_to_atom(M), list_to_atom(F), list_to_integer(A)},
 ?FULL_TD_TU([?COLLECT_LOC(?FUN_APPLY(M1, F1, A1), true)],
 [SearchPaths]).

 Collect falls to a specific Function

Demo

DIY Composite Refactorings

 A set of elementary refactorings to be applied in
a sequence in order to achieve a complex
refactoring effect.

Composite Refactoring

DIY Composite Refactorings

Example 1.

• Batch renaming of function names from CamelCase to
camel_case.

– Rename, Rename, Rename, ...

DIY Composite Refactorings

Example 2.
• Clone elimination.

– generate new function,
– rename function,
– rename variables,
– re-order parameters,
– add to export,
– folding, folding, ...

DIY Composite Refactorings

 Generation of refactoring commands.
 Tracking of program entity names.
 Handling of failure.
 User control over the execution of refactorings.

Issues to handle

DIY Composite Refactorings

 Manual vs. automatic.
 Static vs. dynamic.

Generation of refactoring cmds

Generation of Refactoring Cmds

Generation of Refactoring Commands

?refac_(rename_fun,
 [{file, fun(_File)-> true end},
 fun({F, _A}) ->
 camelCase_to_camel_case(F) /= F
 end,
 {generator, fun({_File, F,_A}) ->
 camelCase_to_camel_case(F)
 end}],
 SearchPaths).

 Example: Generation of refactoring cmds that rename
function names in camelCase to camel_case.

?refac_(CmdName, Args, Scope)

Track Program Entity Names

 The name of an entity (function, module, process
name) referred by a refactoring may have been
changed by one or more previous refactorings.
 Manual tracking of names infeasible.
 Wrangler tracks the renaming history in the
background …
 … uses use the macro ?current to retrieve the
latest name of an entity.

Handling of Failure

What to do if a refactoring fails?
 Atomic composite refactoring.

?atomic(Refacs)

Handling of Failure

What to do if a refactoring fails?

?atomic(
 ?refac_(rename_fun,
 [{file, fun(_File)-> true end},
 fun({F, _A}) ->
 camelCase_to_camel_case(F) /= F
 end,
 {generator, fun({_File, F,_A}) ->
 camelCase_to_camel_case(F)
 end}],
 SearchPaths))

Handling of Failure

What to do if a refactoring fails?
 Non-atomic composite refactoring.
 ?non_atomic(Refacs)

Handling of Failure

What to do if a refactoring fails?

?non_atomic(
 ?refac_(rename_fun,
 [{file, fun(_File)-> true end},
 fun({F, _A}) ->
 camelCase_to_camel_case(F) /= F
 end,
 {generator, fun({_File, F,_A}) ->
 camelCase_to_camel_case(F)
 end}],
 SearchPaths))

User control
 Allow the user to control whether a refactoring should be

performed.
?interative(Refacs).
?interactive(
 ?non_atomic(
 ?refac_(rename_fun,
 [{file, fun(_File)-> true end},
 fun({F, _A}) ->
 camelCase_to_camel_case(F) /= F
 end,
 {generator, fun({_File, F,_A}) ->
 camelCase_to_camel_case(F)
 end}],
 SearchPaths)))

A DSL for Compound Refactorings

 %% conditional cmd generation.
%% repetitive conditional cmd
%% generation.

 %% repetitive interaction.

DIY Composite Refactorings

Example 2.
• Clone elimination.

– generate new function,
– rename function,
– rename variables,
– re-order parameters,
– add to export,
– folding, folding, folding, …

Demo

Generic Refactoring Behaviour
Behaviour gen_composite_refac encapsulates what

a composite refactoring needs to provide.

Callback functions:
• input_par_prompts/0: prompts for interactive input.

• select_focus/1: what to do with focus information.

• composite_refac/1: defines the refactoring script.

Find out more

49

Latest release of Wrangler: 1.0

www.cs.kent.ac.uk/projects/wrangler
Papers:

A User-extensible Refactoring Tool for Erlang Programs.
Huiqing Li and Simon Thompson. 2011.
http://www.cs.kent.ac.uk/pubs/2011/3171/index.html

A Domain-Specific Language for Scripting Refactorings in
Erlang. Huiqing Li and Simon Thompson. 2011.
http://www.cs.kent.ac.uk/pubs/2011/3172/index.html

http://www.cs.kent.ac.uk/projects/wrangler

Installation: Mac OS X and Linux
Download Wrangler-1.0 from

http://www.cs.kent.ac.uk/projects/wrangler/
or get it from

 https://github.com/RefactoringTools/wrangler

In the wrangler directory
./configure
make
(sudo) make install

50

Installation: Mac OS X and Linux
Add to ~/.emacs file:
(add-to-list 'load-path
 "/usr/local/lib/erlang/lib/wrangler-<VSN>/elisp")
(require 'wrangler)

If you’re installing emacs now, then you add the
following lines to your ~/.emacs file
(setq load-path (cons "/usr/local/otp/lib/tools-<ToolsVsn>/emacs"

 load-path))
(setq erlang-root-dir "/usr/local/otp")
(setq exec-path (cons "/usr/local/otp/bin" exec-path))
(require 'erlang-start)

51

Installation: Windows
Requires R11B-5 or later + Emacs

Download installer from
http://www.cs.kent.ac.uk/projects/wrangler/

Requires no other actions.

52

Installation: Eclipse + ErlIDE
Requires Erlang R11B-5 or later, if it isn't
already present on your system.

On Windows systems, use a path with no
spaces in it.

Install Eclipse 3.5, if you didn't already.

All the details at
http://erlide.sourceforge.net/

53

Starting Wrangler in Emacs

Open emacs, and open a .erl file.
M-x erlang-refactor-on or ...
... C-c, C-r
New menu: Wrangler
Customise for dir
Undo C-c, C-w, _

54

Preview Feature

Preview changes before confirming the
change

Emacs ediff is used.

55

Stopping Wrangler in Emacs

M-x erlang-refactor-off to stop Wrangler

Shortcut C-c, C-r

56

Carrying on …

Try on your own project code …

Feedback:
erlang-refactor@kent.ac.uk or
H.Li@kent.ac.uk

57

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

