The HALFWORD HEAP
EMULATOR

EXPLORING A VIRTUAL MACHINE

patrik Nyblom, Ericsson ab
pan(derlang.orqg

mailto:pan@erlang.org
mailto:pan@erlang.org

The Beam Virtual Machine

»Bjorns/Bogdans Erlang Abstract Machine

»Has evolved over the years and is a joint effort by many
developers, within and outside of the Erlang OTP team

»A virtual register machine with 1024 virtual registers

» Garbage collection is done per process with a generational
copying GC (two generations + a special nursery used only
by native code functions)

»Has a constant pool that is not garbage collected

»Large binaries are stored outside of the heap and may be
shared among processes

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 2

Wednesday, 9 November 2011

THE BEam Virtual Machine continuea

» The most important datatype in the VM code is the Eterm, one
(possibly complex) Erlang term

»An Eterm is normally one word (sizeof (void *)) large

» The heap of a process is an array of Eterm’s

» The data in ETS tables are stored as Eterm’s

» The registers are Eterm’s

» The stack in the VM consists of Eterm’s

»When a complex term is constructed in the VM, a number of
Eterm’s are allocated on the process heap, to represent e.qg.
tuple’s, list (cons) cells etc

» The variables in the program are stored on the stack or in a
register

-If the term the variable refers to is complex, the stack/register will contain a
pointer to the heap, so the Eterm has to be able to contain pointers

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 3

Wednesday, 9 November 2011

THE BEam Vlrtual MaChinE(continued)

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 4

Wednesday, 9 November 2011

THE BEam Vlrtual MaChinE(continued)

Process
structure

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 4

Wednesday, 9 November 2011

THE BEam Virtual Machine continues

Process
structure

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 4

Wednesday, 9 November 2011

THE BEam Virtual Machine continues

Process
structure

2| Stack<-

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 4

Wednesday, 9 November 2011

THE BEam Virtual Machine continues

Process
structure

2| Stack<-

Heép

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 4

Wednesday, 9 November 2011

THE BEam Vlrtual MaChIne(contmued)

Registers

Process
structure

2| Stack<-

He5p<

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 4

Wednesday, 9 November 2011

THE BEam Vlrtual MaChIne(contmued)

Registers
Process
structure
\“
4| Stack <+
.
¢
Heap <
Binaries

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 4

Wednesday, 9 November 2011

THE BEam Vlrtual MaChIne(contmued)

Ly Registers

Process
structure

Stack <+

He§p<

Binaries

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 4

Wednesday, 9 November 2011

THE BEam Vlrtual MaChIne(contmued)

Ly Registers
Process
structure
ETS data
Stack < /
nd
He§p<
Binaries

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 4

Wednesday, 9 November 2011

Representing Erlang Terms

»Erlang is a dynamically typed language

» The virtual machine determines the type of a value on the stack
or in registers by looking at tags

»Atag is in reality a couple of bits stolen from the data to encode
the type information needed

» Erlang has a hierarchical tag system where the primary tags are
placed in the two least significant bits of each word:
» The primary tags are (currently)
- 00 = Continuation pointer (return address on stack) or header word on heap

- 01 = Cons cell (list)

- 10 = Boxed (tuple, float, bignum, binary, external pid/port, exterrnal/internal
ref ...)

- 11 = Immediate (the rest - secondary tag present)

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 5

Wednesday, 9 November 2011

Representing Erlang Terms ontinues

» The immediate values have more tag bits

» The current encoding is

_OO/&
_O1f/

. 10//

= Pid (local)
= Port (local)
= Immediate 2 (the rest, even more tag bits)

- 1111 = Small number (fixnum), up to 28 bits including sign

»yAnd then there’s the rest of the immediates, with two more
tag bits:

» The current encoding is:

- 007
- 017

- 111

011 = Atom
011 = Catch (on stack)
011 = NIL

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 6

Wednesday, 9 November 2011

Representing Erlang Terms ontinues

» The boxed values on the heap (primary tag 10) all begin
with a header word, also containing tags and 26 bits for arity

» The tags here are currently
- 0000 = Tuple
- 0001 = Binary match state (internal type)
- 001x = Bignum (needs more than 28 bits)
- 0100 = Ref
- 0101 = Fun
- 0110 = Float
- 0111 = Export fun (make_fun/3)
- 1000 - 1010 = Binaries
- 1100 - 1110 = External entities (Pids, Ports and Refs)

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 7

Wednesday, 9 November 2011

when a term is created

»S0 - when a term is created...

-You write something like this in your program:
A = {[a,b],3}
-The virtual machine puts the following on the heap:
A pair containing the atom ‘b’ as it’s first element and NIL as it's second

A pair containing the atom ‘a’ as it’s first element and a pointer to the
previous pair (tagged as Cons cell) as it's second

A header word followed by a pointer to the previous pair (tagged as
Cons cell) and the (Small) number 3

-And then, in a register or on the stack, a pointer tagged as Boxed is
representing the whole term, referring to the header word of the tuple

Stack Heap

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 8

Wednesday, 9 November 2011

when a term is created

»S0 - when a term is created...

-You write something like this in your program:
A = {[a,b],3}
-The virtual machine puts the following on the heap:
A pair containing the atom ‘b’ as it’s first element and NIL as it's second

A pair containing the atom ‘a’ as it’s first element and a pointer to the
previous pair (tagged as Cons cell) as it's second

A header word followed by a pointer to the previous pair (tagged as
Cons cell) and the (Small) number 3

-And then, in a register or on the stack, a pointer tagged as Boxed is
representing the whole term, referring to the header word of the tuple

b’ 001011 NIL 111011

Stack Heap

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 8

Wednesday, 9 November 2011

when a term is created

»S0 - when a term is created...

-You write something like this in your program:
A = {[a,b],3}
-The virtual machine puts the following on the heap:
A pair containing the atom ‘b’ as it’s first element and NIL as it's second

A pair containing the atom ‘a’ as it’s first element and a pointer to the
previous pair (tagged as Cons cell) as it's second

A header word followed by a pointer to the previous pair (tagged as
Cons cell) and the (Small) number 3

-And then, in a register or on the stack, a pointer tagged as Boxed is
representing the whole term, referring to the header word of the tuple

nba ‘A’

001011 NIL 111011 a 001011

01

Stack Heap

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 8

Wednesday, 9 November 2011

when a term is created

»S0 - when a term is created...

-You write something like this in your program:
A = {[a,b],3}
-The virtual machine puts the following on the heap:
A pair containing the atom ‘b’ as it’s first element and NIL as it's second

A pair containing the atom ‘a’ as it’s first element and a pointer to the
previous pair (tagged as Cons cell) as it's second

A header word followed by a pointer to the previous pair (tagged as
Cons cell) and the (Small) number 3

-And then, in a register or on the stack, a pointer tagged as Boxed is
representing the whole term, referring to the header word of the tuple

b’ 001011 NIL 111011|a 001011

01

2 (arity) (000000 01 3 1111

Stack Heap

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 8

Wednesday, 9 November 2011

when a term is created

»S0 - when a term is created...

-You write something like this in your program:
A = {[a,b],3}
-The virtual machine puts the following on the heap:
A pair containing the atom ‘b’ as it’s first element and NIL as it's second

A pair containing the atom ‘a’ as it’s first element and a pointer to the
previous pair (tagged as Cons cell) as it's second

A header word followed by a pointer to the previous pair (tagged as
Cons cell) and the (Small) number 3

-And then, in a register or on the stack, a pointer tagged as Boxed is
representing the whole term, referring to the header word of the tuple

01

10| (v 001011 |NIL 111011 ‘a’ 001011
l—>2(arity) 000000 01 3 1111

Stack Heap

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 8

Wednesday, 9 November 2011

The Heap is an Array of words

»Each cell on the heap needs to be able to contain a tagged
pointer (a Boxed or a Cons)
-So does each cell on the stack and each register

»Even a small number (like 3) takes a cell (a word) on the
stack or the heap

> If the size of a pointer changes, the whole size of the heap
and stack follows

-64bit pointers means more or less twice as large heap as with 32bit
pointers

-Not entirely true, larger numbers and binary data can be contained in
one cell on the heap, but almost true...

-The overhead for strings is overwhelming in a 64bit VM, almost 16
times the size of a corresponding binary (at least for long latin1
strings)...

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 9

Wednesday, 9 November 2011

CPU speed and memory bandwidth

» The combined speed of the cores in modern computers still
iIncreases rapidly

» Except for the leap in memory bandwidth in the Core i7
architecture (which Intel representatives describe as a “one time
gift”’), memory bandwidth can not keep up with the CPU speeds

» Utilising the CPU'’s potential despite the slow memory is one of
the most interesting challenges we have

»Memory consuming programs will continue to be slow, even
with faster and more cores

» A program that consumes twice the amount of memory will have
to wait twice the time for data to be available from memory

- except for when it's already in the cache, but the cache will be exhausted
twice as fast...

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 10

Wednesday, 9 November 2011

|A-32 vs x86-64

» The x86 064 processors are extended 1A-32 (x86)
Processors
-Twice as large general purpose registers
-Twice the amount of GPR’s
-Twice the amount of XMM reqisters
-48 bit address space (in the future extendable to 64 bit)

» The x86_64 processors can execute in 32 bit legacy mode

-But then we are back in the 32 bit world and lose 8 GPR’s among
other things

»For programs that do not need several gigabytes of
memory, 32 bit mode might increase performance
-if you have a lot of pointers...

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 11

Wednesday, 9 November 2011

The Problem

» The Erlang VM does use a lot of pointers...

» Erlang programs also tend to be large, consuming more than
2GB of memory

»>When you need to switch from a 32bit VM to a 64bit, you
suddenly start consuming nearly twice the amount of memory

»...while execution speed falls when not number crunching:

64bit vs 32bit
400,000.00

300,000.00

200,000.00

100,000.00

big codec ehb ran storage life estones (more is better)
B 32bit B 64bit
The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 12

Wednesday, 9 November 2011

The Alternatives

» Stick to the 32 bit machine

-1f the program is to large, spread over several virtual machines on a 64bit OS
-Pros:

Execution speed in the 32bit VM is usually higher

Combined memory footprint is small
-Cons:

The system needs to be redesigned (ouch)

Execution speed may fall due to internode communication

» Buy more memory and faster machines, then switch to 64 bit
-Pros:
No redesigning
The way to go eventually anywaly...
-Cons:
Costly if at all possible
May still be slower

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 13

Wednesday, 9 November 2011

Th e Alte rnatlve S (continued)

» A virtual machine where heap data is referred to as 32 bit offsets into
the heap

-Sounds nice, but heap data is scattered over two generations of heaps, temporary
storage, constant pools etc

- Also return addresses on the stack needs full pointers
- Requires huge rewrite and would result in performance degradation

» A virtual machine where each process has it's own 4 GB address space

-Nice idea, would work if we had the full 64 bit address space to work with

Unfortunately we do not, we have a maximum of 48 bits for addressing and would
have to limit the number of processes

- By letting processes share memory areas and relocating processes when one 4GB
area gets full, we could make this work

This however would require serious rewrites of almost every built in function in
the VM

» A virtual machine where all heap data is kept in a 32bit world but the
rest of the VM can operate in the full 64bit address space
-This is definitely feasible

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 14

Wednesday, 9 November 2011

The Solution

»All Erlang process data (heap and stack) is kept in one 4GB
address range

-This means that the sum of all the heaps and stacks (+ beam code) in
the system may not exceed 4GB (or something slightly less, as the
data section may interfere)

-ETS data and shared binaries are not included in those 4 GB

-For an application with a moderate process sizes and numbers, but
with large ETS datasets and/or large binary datasets this approach
may reduce the memory footprint severely

-By also compacting the ETS data we get almost the same memory
footprint as with a 32 bit VM (but are able to have more data in
memory)

-This is also fairly simple to implement on 64 bit Linux

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 15

Wednesday, 9 November 2011

The Implementation

»>We need a way to reserve the lower 4GB of the address
range for Erlang process data

-This can be done on Linux in a fairly simple way, using mmap and
MAP_NORESERVE to take control of the “low”™ memory

-An memory page allocator for the lowest 4 GB of memory was
iImplemented that gives processes memory pages from the “low” range

-As all memory allocations in the VM specify the kind of data (i.e.
process heaps are allocated with erts alloc

(ERTS_ALC T HEAP, size)etc), it's quite easy to direct the heap
data to pages allocated with the special “low” memory mmap allocator
»We also need to truncate pointers to 32 bit when stored In
the process and expand them to 64 bit when we are to
follow the pointers
-This is done when tags are added/removed - almost no extra cost!

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 16

Wednesday, 9 November 2011

The Implementation ontnuea

—_0x00007FFFFFFFFFFF

» A few other things needed to
be tampered with

-Code needs to be in “low” I
memory, but threaded instructions '
are 64 bits as actual instructions
are pointers into the VM
executable

-Pointers to binary data takes two
“halfwords™ on heap as binaries
are in “high” memory

Binaries
Process
structure

0x0000000100000000

; " 0x00000000FFFFFFFF
-Code that expects a regular Stack/
pointer to fit in an Erlang term > Heap

variable needed rewriting

-Code that stored Erlang terms on
the C stack needed rewriting

J0x0000000000000000

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 17

Wednesday, 9 November 2011

The Implementation - ETS

»ETS data is stored with each object in a separately
allocated area

» The Erlang term data is rewritten when copied into the table
so that pointers are replaced by offsets from the start of the
object instead of absolute addresses

»Each ETS object can then be up to 4GB

»The ETS objects (and all metadata) can be stored in “high”
memory

»Copying to/from the ETS tables require special copy
routines, but it's more or less as fast as in a regular VM

»Some operations (like matching) are a little trickier, but it
could mostly be solved without performance penalties

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 18

Wednesday, 9 November 2011

What’s gained?

» Compared to a 32 bit VM (given that we have a 64 bit OS)

-We can break the 4GB barrier as long as we keep the regular processes below 4GB -
huge amounts of ETS and binary data is possible

- Usually more place for process heaps as most of the “low” 4GBs are free in 64 bit mode
-~ Number crunching is slightly faster
- Drivers etc can be written as 64 bit code

» Compared to a 64 bit VM (given that we can use it...)
- Faster

- Smaller memory footprint

Halfword vs 32bit and 64bit
400,000.00

300,000.00

200,000.00 ‘

big codec ehb ran storage life estones (more is better)

M 32bit W 64bit halfword
The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 19

100,000.00 ‘

0

Wednesday, 9 November 2011

What’s Lost?

»Compared to a 32 bit VM

-The ability to run on 32 bit OS’es

-The ability to run on anything except Linux (without resorting to pure
64 bit machine)

-HIPE (for now)
»Compared to a 64 bit VM

-The possibility to have processes that together (or by themselves)
exceed 4GB of combined stack and heap

-Some number crunching speed
-The ability to run on anything except Linux
-HIPE (for now)

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 20

Wednesday, 9 November 2011

Can this be used at all?

»Yes - many applications have nowhere near the heap sizes
that requires a pure 64 bit VM

»Yes - many applications have huge amounts of ETS data
that really requires a 64 bit address space while they still
don’'t need much space for heaps

yYes - It exists and has existed since R14B02 and is tested
daily, just like any other supported platform

»Yes - many applications run on 64bit Linux

»...and you can always try, no adaptation of your source code
IS needed. If your application fit's the requirements, you will
gain memory and speed without changing one single line of
code

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 21

Wednesday, 9 November 2011

Can and will this be improved?

» The halfword virtual machine can certainly be improved:
-Porting to more platforms - win64, FreeBSD and MacOS for example
-Spread processes over more 4GB ranges

Requires extensive rewrites and some inventing, but is feasible
May result in lower performance, but more applications could use it

-Code could be moved out of the “low” range (fairly easy, but may not
be worth it)

-There may be room for optimizations

yIt Is supported/maintained and will continue to be so if
there’s “enough interest” (i.e. if it's used...)

» If more applications use it, more developing effort will of
course be put into further development...

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 22

Wednesday, 9 November 2011

summary

»Pure 64 bit VM's tend to waste a lot of memory and may
perform worse than the 32 bit VM's

» By reducing memory footprint, we gain speed as well as
memory

» Compacting the heap data may gain speed enough to
compensate for the extra cost of not using full size pointers

»Many applications could benefit from using the halfword VM,
but few know about it yet

»You could try it as an alternative, both to a 32 bit VM and to
a 64 bit one, as long as your OS is a 64 bit Linux

-Just replace your current installation with the halfword build and give it
atry

-./configure --enable-halfword-emulator --disable-hipe

The Halfword Virtual Machine | Public | © Ericsson AB 2011 | 2011-10-28 | Page 23

Wednesday, 9 November 2011

ERICSSON

24

Wednesday, 9 November 2011

