
Steve Vinoski
Member of Technical Staff

Verivue
Westford, MA USA
vinoski@ieee.org

Enterprise Integration
Displacing the Status Quo

1

mailto:vinoski@ieee.org
mailto:vinoski@ieee.org

Idealized Enterprise Architecture

AI = Application Interfaces
CF = Common Facilities

DI = Domain Interfaces
OS = Object Services

AI DI
OSDI CF

CF OS

OS
CF

OS

OS

CORBA ORB

Example: Object Management Architecture (OMA)
from the Object Management Group (OMG)

2

Enterprise Integration Reality

3

Compounding the Problem
 Several compelling but basically broken distributed

system ideas led some down the wrong path
 Non-technical problematic forces:

− significant marketing investment in flawed approaches
− popular technologies attract more research attention,

regardless of flaws
 Technical problematic forces:

− ignorance of fundamental technical issues
− applying inappropriate abstractions and trade-offs
− choosing developer convenience over correctness

4

1976: Remote Procedure Call
 RFC 707: “A High-Level Framework for Network-

Based Resource Sharing”, James E. White
− “Ideally, the goal...is to make remote resources as easy to

use as local ones. Since local resources usually take the
form of resident and/or library subroutines, the possibility of
modeling remote commands as ‘procedures’ immediately
suggests itself.”

− “The procedure call model would elevate the task of
creating applications protocols to that of defining
procedures and their calling sequences.”

 The RFC includes warnings about this model being
an inappropriate abstraction

5

1980s: Languages and Distribution
 Systems evolving: mainframes to minicomputers to

workstations to personal computers
− decentralization leads to increased use of networking

 Structured Programming yields to Object Orientation
 Programming language development: e.g., C++,

Eiffel, Objective C, Erlang, Lisp machines
 1984: Birrell/Nelson paper explains how to

implement RPC
 Distributed languages, e.g. Argus, Emerald

− unite general-purpose programming with distribution

6

1990s: Distributed Objects
 OOP was viewed as a huge step forward for general

software development
− objects were the answer to everything

 Natural extension of RPC was to treat distributed
services as distributed objects
− objects could even encapsulate the network!
− general-purpose language objects + distribution

 Major distributed object development efforts began
− OMG CORBA, IBM DSOM, Microsoft COM
− very significant corporate investment

7

1990s: Dist Objects, Java
 Distributed object wars: CORBA vs. COM

− C++ primary language of both systems
− continued heavy corporate investment

 Java comes along
− a better C++
− easier distributed objects — just put Java everywhere,

it’ll all work great!
 Tremendous investment in marketing Java

8

Late 1990s: J2EE
 Java application servers encapsulate and abstract

CORBA’s capabilities
− hide CORBA’s complexity behind the simplicity of Java
− hide relational data behind object-relational mapping

(ORM)
 Enterprise already bought into CORBA and

relational DB, so J2EE is a no-brainer
− J2EE uses CORBA’s IIOP and distribution machinery

underneath, interoperate with existing CORBA
 Begins the push toward questionable “plain ol’ Java

objects” (POJOs) as distributed objects

9

1999-2008: SOAP/WS-*, More RPC
 1999: “Simple Object Access Protocol” appears

− distributed objects ala CORBA/COM but with XML/HTTP
− later renamed to just SOAP (not an acronym)

 2002: W3C starts Web Services (WS-*) standards
− many hundreds of pages of specifications, often just

“CORBA with angle brackets”
− often competing specifications from competing vendors

 2006-2008: they fade as quickly as they started
− SOAP and WS-* start to fade away, leaving a void
− leads to “new” RPC: e.g., Service Component Architecture,

Facebook Thrift, Cisco Etch

10

What’s Wrong With This Picture?
 CORBA, J2EE, SOAP, WS-*, etc. are object RPC
 Flawed assumptions:

− synchronous blocking local invocation model works for
distributed computing communication

− local objects can be distributed objects
− language matters most, distribution is just an afterthought
− interface definition languages = good language independence
− developer convenience more important than system correctness

 RPC evolution continues even today, despite warnings
− RFC 707 warned us from the beginning
− Waldo et al. “A Note on Distributed Computing”, 1994

11

Investment Prolongs the Pain
What initially look like
convenient abstractions
(also known as “silver bullets”)...

...leads to significant vendor
investment in developing products
based on the abstractions, which...

...often leads to investment in
industry consortia and in
standardization by both vendor
and customer, which...

...leads to heavy investment in
marketing the resulting products, which...

...leads the customer to push hard
on the vendor to make significant
product enhancements, which...

12

Investment Prolongs the Pain
What initially look like
convenient abstractions
(also known as “silver bullets”)...

...leads to significant vendor
investment in developing products
based on the abstractions, which...

...often leads to investment in
industry consortia and in
standardization by both vendor
and customer, which...

...leads to heavy investment in
marketing the resulting products, which...

...leads the customer to push hard
on the vendor to make significant
product enhancements, which...

•Which ultimately means:

• lots of money invested

•nobody wants to break the cycle

•even when the original abstractions are
known to be fundamentally flawed

12

Technology Adoption Lifecycle

Technology

Enthusiast

Visionary

Pragmatist

Conservative

Skeptic

time

The ChasmEarly
Market

Mainstream
Market

see Geoffrey Moore, Crossing the Chasm, for more details

13

Disruptive vs. Sustaining Innovations
 Sustaining innovations improve the status quo,

disruptive innovations displace the status quo
 Disruptive innovations initially address a low-end

market overshot by incumbent technology
− such innovations considered inferior by incumbent users
− but “good enough” for early adopters

 Successful disruptive approach eventually moves
up-market and displaces the incumbent

 See Clayton Christensen’s The Innovator’s Dilemma
and follow-on works for the full explanation

14

RPC: Sustaining Innovations Only
 The entire RPC line of evolution has permitted only

sustaining innovations over the years
− every innovation has simply been an improvement of the

same basic approach
− existing customers have a lot invested in the status quo,

and they don’t want it to change
 Two primary areas where innovation has appeared:

− developer convenience — languages, frameworks,
products that are easier for developers to use

− “enterprise quality” — improving systems for
redundancy, failover, fault tolerance, performance, etc.

15

Ripe for Disruption
 The RPC approach is ultimately quite expensive

− doesn’t scale very well, due to specialized interfaces
and need for same middleware at sender and receiver

− code generation leads to brittle, hard-to-version, hard-to-
upgrade systems

− getting “enterprise qualities” right is difficult, ultimately
determined by RPC infrastructure regardless of the app

− developers write loads of code to do simple things
− far too much accidental complexity

 Is prioritizing developer convenience at this expense
really the right trade-off?

16

Going Up-Market
 Customers demand a steady stream of sustaining

innovations from an incumbent technology
 Vendors evolve their systems, i.e. move up-market,

to satisfy the most demanding customers
− that’s where the money is

 Customers with simple requirements get left behind
− the system has evolved way beyond their needs
− they don’t want to pay for what they don’t use

 When an incumbent technology moves up-market it
leaves a void that disruptive technologies can fill

17

Representational State Transfer (REST)
 Architectural style of the web, intended for large-scale

hypermedia systems
− makes network effects important, rather than languages and

developer convenience
− puts distributed systems problems like latency and partial failure

directly front and center
− specifies clear trade-offs and constraints that help address

those problems
 Contrast with Service-Oriented Architecture (SOA), which

specifies no constraints at all
 HTTP is the best known RESTful application protocol,

others are possible

18

RESTful Design with HTTP
 Name your resources with URIs

− URIs are cheap, use plenty of them
 For each resource, decide:

− what each HTTP method does and what status codes
it returns under what circumstances

− what media types (MIME types) are supported
− how each representation of the resource guides the

client through its application state (HATEOAS,
Hypermedia As The Engine Of Application State)

− how to handle conditional GET (for caching purposes)

19

HTTP: RESTful Uniform Interface

HTTP Method Purpose Idempotent?

GET Retrieve resource
state representation

Yes
(no side effects)

PUT Provide resource
state representation Yes

POST Create or extend a
resource No

DELETE Delete a resource Yes

20

REST/HTTP Reduces Integration Costs
 True language independence

− allows use of higher-productivity languages
− it’s helping fuel our current language renaissance

 Applicable to wide variety of integration scenarios
− proven by the World Wide Web, where it’s the incumbent

integration technology
 Reduces need for costly specialized middleware

− excellent web servers are free (e.g., Yaws)
− different web servers can make different trade-offs for

different applications, different scalability choices
 Proven interoperability

21

The Web: Integrated System of
Systems

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web
Clients

22

The Web: Integrated System of
Systems

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web
Clients

22

The Web: Integrated System of
Systems

 Web clients can talk to
RESTful web services, even
though they’re developed
completely independently
− integration nirvana

 Most enterprise integration
projects do not require expensive “enterprisey”
qualities

 REST can therefore address the enterprise
integration market overshot by the up-market
enterprise SOA/RPC systems

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web
Clients

23

REST/HTTP: Disruptive Innovation for
Enterprise Integration

Technology

Enthusiast

Visionary

Pragmatist

Conservative

Skeptic

time

RPC family
is waning (CORBA,
J2EE, SOAP, WS-*, etc.)

REST-based integration

24

Erlang is Disruptive Here Too
 Web servers and Erlang: identical design centers

− long-running, highly concurrent, highly reliable systems
 Energy costs and global warming require finding

better ways to scale than endless racks of machines
 Avoid considerable costs of reinventing high

reliability, concurrency, hot upgrades, replication
− I wasted many years on this for RPC middleware
− Variation of Greenspun’s Tenth Rule: “Any sufficiently

complicated middleware platform in another language
contains an ad hoc, informally-specified, bug-ridden,
slow implementation of half of Erlang/OTP.”

25

Summary
 RPC-based enterprise integration ripe for disruption

− RPC is long in the tooth, and wrong to begin with
− current programming language renaissance driving early

adopters to look beyond Java, C++, C#
 REST/HTTP looks like a disruptive enterprise integration

alternative
− REST/web “good enough” for many integration needs

 Erlang/OTP disruptive too
− proven enterprise quality, at lower development costs
− works quite well for RESTful systems
− gets distributed systems right

26

For More Information
 Crossing the Chasm, Inside the Tornado, and other

books by Geoffrey A. Moore
 The Innovator’s Dilemma, The Innovator’s Solution,

Seeing What’s Next by Clayton Christensen
 RESTful Web Services, Leonard Richardson and

Sam Ruby (O’Reilly)
 rest-discuss Yahoo! mailing list
 Numerous articles on http://steve.vinoski.net/
 “RESTful Services with Erlang and Yaws” (http://

www.infoq.com/articles/vinoski-erlang-rest)

27

http://steve.vinoski.net
http://steve.vinoski.net
http://www.infoq.com/articles/vinoski-erlang-rest
http://www.infoq.com/articles/vinoski-erlang-rest
http://www.infoq.com/articles/vinoski-erlang-rest
http://www.infoq.com/articles/vinoski-erlang-rest

