Design and Implementation of a
Content Gateway in Erlang

Xu Cao and Haobo Yu
LightPole, Inc.

Roadmap

Introduction: who, what, why
Architecture

Implementation issues
Discussion

Who are we?

e LightPole

— Founded in 2007, development center in Beijing
* Focus on mobile software development

— LBS

— Mobile banking
— Mobile airline services

Mobile applications in our eyes

Anatomy of a mobile banking app

all REEEE o 10:00 91 % (e

~S&tEs= CR

Banking
* Account management
* Credit card
* Balance transfer

Value-added Services
* Travel services
* Phone bill payment
* Movie tickets

Customer Services
* Call center
* Online help
* Account setup

user clients

—

i
.

| o

&0

% Gateway

N et

Requirements

application
servers

* Mobile client
— Supports all major platforms
— Customized browser
— Persistent connection

* Content gateway

— Connects to many app
servers via XML, JSON and
others

— Connects to many mobile
clients

What does the gateway do?

Interface with many app servers, process and
transform data

Generate mobile client pages from internal
data representations

Support storage of intermediate states, such
as cookies and forms

Support typical database systems

Provide OTA and version control of mobile
clients for major platforms

Why Erlang?

Efficient support of asynchronous
communication and process abstraction

Safe programming protections
Scalability in @ multi-core environment

Easy to interface with C++ and Java
components

Roadmap

Introduction: who, what, why
Architecture

Implementation issues
Discussion

Data flow

Design choices

* HTTP as universal transport
— Avoid problems traversing carrier gateways

* Framework to manipulate data flows

— Embedded in a web server, similar to but different
from a web framework

ORM page
web database HTML templates > browsers

data APIs

_—
\

page clients

XPath
EWP | XML erlang + templates

Architecture

mapping

rules properties

i

Request
Router <::> Controller <::> er
@)
LI
} 9
\ \
/\\ \\
\\ \\
template Data *®
engine parser NN
\\
\
\‘

template
files

-

Application
Server

I~\
I’ \\
1T

Do

!
J L

-
-
-

DB -
driver | <

T

i
i

Erlang Content Gatewa

requests

Can be dynamically
configured and
updated

Architecture

mapping .

H=

URI
Router <:>

template
engine

template
files

ARTR

Erlang Content Gatewa!

Application
Server

Architecture

-

mapping
rules

URI
Router

-

=

!

template

engine

17

template
files

E

properties

Controller

ﬁ ‘

1

\

A\\ \\
\ \\
Data kb

parser 2
N

=

™
A
N
>
\

rlang Content Gatewa

\
\
\
\
S
R
.

Request
er

A
).‘

D

driver | <

(=

Processing units

Application
Server

Architecture

-

mapping .

Application
Server

Transient: ETS
Persistent: DB

How to use it?

Abstractions

* System =[App, ...]
— An app ~ a mobile app
— Can be loaded, unloaded, updated dynamically

 App = [Controllers, ...]

— Defined by a configuration file, consists of a set of
beam and resource files

 Channel =[Channel, rules, ...]
— A channel ~ an interface element in a client

— Has a unique URL, consists of a set of rules to perform
a task, can be nested in any given way

— Hides details of remote requests to app servers

An example

Create an app skeleton via script

.app conf file: request routing rules

— http://ebank/index -> ebank_controller:index

{controllers,

[{{"ebank",6 "index"}, {ebank, index},[{verify,
false}, ...]

Y,
Template

<?cs include:"boc util”?>

nggm method="post' action="#{cs var:base url}#/boc _c2c/
102>

</form>

Package it as a zip, loaded into a running gateway

Roadmap

Introduction: who, what, why
Architecture

Implementation issues
Discussion

Problems

e String implementation is CPU and memory
Intensive

— E.g., during XML parsing and template generation
e Support databases and middleware used by

enterprise application

— E.g., Oracle, Sybase, DB2, ...

* Lock competition on ETS table in multi-core
environment

Solutions

string processing

* Use linked-in driver/NIF to integrate efficient
C/C++ libs like XercesC++, XQilla and
ClearSilver for string processing and template

generation

* Avoid manipulation on string in Erlang
directly, pass binary between driver and

Erlang process

Template Engine

* Build on top of XercesC and ClearSilver
— Accept XML as input
— High performance template generation

e Support nested input data structure
— Like {key) [{a/ Vl}/ {b/[]}]}

Result

Xml parser
T =
(Xerces)
2Kb 0.56ms 0.9ms
5Kb 1.3ms 2.1ms
16Kb 1.4ms 6.7ms

Template language

Page Size Linked-in Driver ErlyDTL
(ClearSilver)

2Kb 0.04ms 0.12ms
11Kb 0.09ms 0.4ms

Solutions

database and system support

* A linked-in database driver using C/C++ APlIs
— Support elegant APl syntax from ErlyDB
— Support typical enterprise databases: Oracle, DB2,
Sybase, MySQL

* Use Java Node to integrate enterprise system
library such as IBM CICS Client

Result

CentOS 5.1, MySQL 5.1
10000 insertions and selects repeated 4 times
Select 200K data

Operation Linked-in ErlyDB ODBC
driver (ms)

insert 0.5ms 0.868ms 49ms
select 98ms 226ms 115ms

Solutions

resources competition

* Horizontal split policy

— Split R/W locks for ETS tables (what the
write_concurrency optimization did in R14)

— One exclusive instance of resource for each
scheduler

e After optimization, 3 times throughput
— 4*2.5Ghz, Intel Q8300

About AlX

* Problem
— AIX 6.1, 4 CPUs

— SMP-enable VM, R14B01, linked-in driver/NIF
could consume equivalent to one CPU

— This happened to crypto and our own driver

 Workaround
— One Erlang node for each CPU core (for AlX)

Roadmap

Introduction: who, what, why
Architecture

Implementation issues
Discussion

Discussion

* Better AlX support?

— We are willing to work with others interested.
Please contact us!

* Optimize it
* Open source it

The End

Thank you!

