McErlang — a Model Checker for Erlang Programs

Lars-Ake Fredlund, Clara Benac Earle
Universidad Poligcnica de Madrid

Hans Svensson, Chalmers

ddddddddddddddddddddddddddd

Test

property based testing

McErlang basics

m McErlang is useful for checkingoncurrent softwarg
not for checking sequential software

m The Erlang runtime system for concurrency and communigasio
replaced with a new runtime system written in Erlang
(Pid ! Value , spawn, ...have been reimplemented)

m A concurrent program is checked un@dirpossible schedulings

m McErlang is open source, available under a BSD license

(Q) Facultad de Informatica Te St

ddddddddddddd .
rrrrrrrrrrrr property based testing

McErlang In Practise: A Really Small Example

Two processes are spawned, the first starts an “echo” séatethoes
received messages, and the second invokes the echo server:

- nrodul e(example).
-export ([start/O]).

start() ->
spawn(fun() -> register(echo, self(), echo() end),
spawn(fun() ->
echo! { msg, sel f (),’hello _world” },

recei ve
{echo,Msg } -> Msg
end
end).
echo() ->
recei ve

{ msg,ClientMsg } ->
Client !{echo,Msg }, echo()
end.

() Facaitad do Informatica Test

property based testing

Example under normal Erlang

Let’s run the example under the standard Erlang runtime=ny.st

> erlc example.erl
> erl
Erlang R13B02 (erts-5.7.3) ...

1> example:start().
<0.34.0>
2>

That worked fine. Let’s try it under McErlang instead.

Test

lllllllllllllll .
""""""""""""""" property based testing

Example under McErlang

First have to recompile the module using the McErlang coenpil

> mcerl_compiler -sources example.erl -output dir .

ddddddddddddddddddddddddddd

Test

property based testing

Example under McErlang

First have to recompile the module using the McErlang coenpil

> mcerl_compiler -sources example.erl -output dir .

Then we run it;

> erl
Erlang (BEAM) emulator version 5.6.5 [source | [smp:2]

Eshell V5.6.5 (abort with "G)
1> mce: appl y(example,start, []1).
Starting McErlang model checker environment version 1.0 ..

Process ... exited because of error. badarg
Stack trace:

mcerlang:resolvePid/2
mcerlang:send/2

@) Facultad de Informatica Te St

ddddddddddddddddddddddddddd

property based testing

Investigating the Error

An error! Let’s find out more using the McErlang debugger:

2> mce_erl_debugger:start(mce:result()).

Starting debugger with a stack t race; execution terminated with
user program raised an uncaught exception.

stack(@2)> showExecution().

0: process < node,1>:

run function example:start([1)
spawn({ #Fun<example.1.118053186>, [1},
spawn({ #Fun<example.2.76847815>, [1}, 1
process < node,1> was terminated

process < node,1> died due to reason normal

[]) - -> <node,2>
]) - -> <node,3>

1. process < node,3>:
run #Fun<example.2.76847815>([1)
process < node,3> died due to reason badarg

() Facaitad do Informatica Test

property based testing

Error Cause

m Apparently in one program run the second process spawnea\in
calling the echo server) was run before the echo servef:itsel
run #Fun<example.2.76847815>([1)

m Then upon trying to send a message

echo! { msg, sel f (),’hello _world" }

theecho name was obviously not registered, so the program crashec

() Facaitad do Informatica Test

property based testing

Presentation Outline

m What is model checking & a brief comparison with testing

m McErlang basics
m Integration with QuickCheck
m McErlang in practise: installing and usage

m Working with a larger example: a lift control system

llllllllllllllllllllllllllllll

Test

property based testing

Model Checking: Basics

m Construct an abstractodel of the behaviour of the program, usually
a finite state transition graph

0 A node representsRrogram state(z = 0,y = 3)

0 Graph edgesrepresent computation steps from one program sta
to another

(é) Facultad de Informatica Te St

llllllllllllllllllllllllllllll

st property based testing

Model Checking: Basics

m Construct an abstractodel of the behaviour of the program, usually
a finite state transition graph

0 A node representsRrogram state(z = 0,y = 3)

0 Graph edgesrepresent computation steps from one program sta
to another

m Checkthe abstract model against some description of
desirable/undesirable model properties usually speaifiademporal
logic: Alwaysx > 0

()Eé) Facultad de Informatica Te St

llllllllllllllllllllllllllllll .
property based testing

Testing Concurrent Programs

Why is (random) testing of concurrent programs difficult?

ddddddddddddddddddddddddddd

Test

property based testing

Testing Concurrent Programs

JA0ig

{[e]'bai}itaxo0|

{[e]'bai}itaxno0|

Consider the state space of a small program

9588118320

9sea1d1i1990]

joig'auopiy,

9sea|aljl9320]|

9583119390

{[e]'bai}itaxo0| {[e]'bai}itaxo0

Ly

ojy'auo

sea|aljlayao| A0if

CELEIENIFEREIY]

x
o

¥ 9sea|alilax2o|

A0ig

auopig

e {[el'barisaxool| {[e]'bas}isasiool sH0i]

{[e]'bai}iiaxo0|

ERCETENPENELY 124

{[e]'bai}iiaxo0]|

x
ee

{[e]'bai}iiaxoo N\ {[e]‘bai}iiaxo20|

{panieisyo}iT

{panieis*yo}i

o~
©

{[e]'bai}iiaxo0|

40ig,

gsea|alilanoo

{[e]'bai}iiaxo0|

auopiy({[e]'bai}iiaxo0|

{[e]'bai}itaxo0|

A0iy.

A0is)

A0iv

{[e]'bai}jiaxo0|

{[e]'bai}iiaxo0|

9sea|alj1920]

Test

property based testing

Universidad Politecnica de Madrid

Facultad de Informat

©

Testing Concurrent Programs

{[e]'bai}itaxo0|

x
o

¥

auopig {[e]'bai}itaxoo\ {[e]'bai}itexo0|

{[e]'bai}iiaxo0)\

9588118320

ojy'auo

JA0ig

{[e]'bai}itaxo0|

{[e]'bai}itaxno0|

Random testing exploreme path through the program

e {[e]'bai}iiaxo0|

{[e]'bai}iiaxo0]|

osea|aljl9320]|

40ig,

9SB8[31j19390]

{[e]'bai}itaxo0| {[e]'bai}itaxo0

Ly

A0is)

sea|aljlayao| A0iH e

9sEe8[91j18320|

{[e]'bai}izaxoo\{[e]‘bai}iiax020|
{parre1s"yo}iT

{pauieis*yo}ig

gsea|alilanoo

A0ig A0iv
{[e]'bai}iiaxo0| {[e]'bai}jiaxo0|
© © ©
{[e]'bai}itaxo0] {[e]'bai}iiaxo0| Noit auopiy({[e]'bai}isaxoo| \ {[e]'bai}iiaxo0|
{[e]'bai}itax00|
9SB9]91{18320] 1% 9sea|alj1920]
A0ig {[el'bas}isaxool A0iy

Test

property based testing

ica

Universidad Politecnica de Madrid

Facultad de Informat

©

Testing Concurrent Programs

{[e]'bai}itaxo0|

auopig {[e]'bai}jiaxo0|

{[e]'bai}iiaxo0)\

{[e]'bai}iiaxo0|

{[e]'bai}iiaxo0|

auopit\{[e]'bai}itexo0|

9sea1d1i1990]

A0iy
9589|21j19%90 95899119390 %0ig
9589]21j19%90
{[e]'bai}itaxo0| {[e]'bai}itaxo0
ojp'auo %oig|

= =

e sea|aljlayao| A0if e

| - %0iy| @sea|alilaxnoo| 95B9|21j19%90| gsea|alitaxnoo]
. — A0ig A0y

e {[e]'bai}itaxno0| e e
a {[e]'bai}iiaxo0| {[e]'bai}jiaxo0|
— Aoig auopig e 0
V {[e]'bai}itaxo0| {[e]'bai}itaxo0] {[e]'bai}iiaxo0| Noit auopiy({[e]'bai}isaxoo| \ {[e]'bai}iiaxo0|
e e {[e]'bai}iiaxo0| {[e]'bai}itaxo0|

)

S 9589[1j19%20| vy 9se9[a1j19%90|

S {[e]'bai}itaxno0| e
e A0i {[e]'bai}iiaxo0]| 3Oit

- (o)
d {[e]'bai}iiaxoo N\ {[e]‘bai}iiaxo20|

)

a {panieisyo}iT

e {panieis*yo}i

LS

e
-W

Test

property based testing

Universidad Politecnica de Madrid

Facultad de Informat

©

Testing Concurrent Programs

{[e]'bai}isano0]|

%0t

EECETEITENELY

95©3]91i19%90]

{[e]'bai}i1axo0|

ojy‘auopig

959]21{19%90]

N0l 3SEed|84j189%00|

30ig

{[e]'bai}itexo0|

%0 auopig

{[e]'bai}i1ax00| {[e]'bai}j1ax00]|

14 {le]*bau}isaxoo)

2589]91{19%90]

{[e]'bai}j1an00]|

A0ig|

A lot of testing later (note the states not visited)

A0it

{[e]'bai}jrax320]|

oo\ {[e]*

{[e]'bai}jsaxo0]|

Aoig‘auopiy,

CEEEIEITENELY

08 |

{[e]*'bai}itaxno0]

™~

1T

95©991{19%90]

/

6€

_ ™

€2
:m_,cm::wxorn/
€

auopiy| {[e]'bai}iiano0|

30ig

A0it

{[e]'bai}i1axo0

0T

bai}iiaxo0|

{pauieiso}iT

{panre1s‘yo}ig

A0ig

SB3|31j19%90)|

(14

{[e]'bai}itaxo0]

A0iy.

A0ig

-~

A0ity

{[e]'bai}jiano

£
:m%cmg {[e]'bai}itexo0
9€

duopiy A0iv

LE
mwmm_m:_mv_uﬂ/
9T

€

Test

property based testing

Universidad Politecnica de Madrid

Facultad de Informat

©

Testing Concurrent Programs

thout rencsiti

. Wi

A0it

Model checkingcan guarantee that all states are visited

states

{[e]'bai}i1axo0

{le]'bai}isoxo0|

{[e]'bai}iiaxo0]|

A0ig‘auopiy

95e9|31{18390]

{[e]'bai}iiaxno0| {[e]'bai}itaxo0|

Oiy‘auopig
psea|alileo0] 30it
R BEELCEIEITENET) 9sea|alj19%20]
%0ig A0ig

{[e]'bai}jsex20|

auopig

{[e]'bai}itexo0] {[e]'bai}itaxo0|

A0iy

{[e]'bai}itano0|

2sB2|21{19%20

{[e]'bai}itaxo0|

{[e]'bai}itaxo0]

{[e]'bay

{paneis‘y0}iT|

{panieisyotig

{[e]'bai}iiaxo0|

30ig

gsea|aljla320]|

{[e]'bai}iiaxo0|

A0ig

A0iy

{[e]'bai}itaxno0|

auopiy({[e]'bai

{[e]'bai}iiaxo0|

A0iy.

}iaoxo0] \ {[e]‘bai}itoxo0|

9sB8|a1j18320]

{[e]'bai}itaxo0|

Test

property based testing

Universidad Politécnica de Madrid

Facultad de Informat

©

Step-by-step execution of Erlang Programs

m To be able to visiall the states of an Erlang program we need the
capability to take @anapshotof the Erlang system

[0 A snhapshotprogram stateis: the contents of all process
mailboxes, the state of all running processes, messagessitt
(the ether), all nodes, monitors, ...

Node C
process P1 process P2 N \
Node A ‘ /\X\
=S

Ether

= \

Node B

@) Facultad de Informatica Te St

llllllllllllllllllllllllllllll .
property based testing

Step-by-step execution of Erlang Programs

m To be able to visiall the states of an Erlang program we need the
capability to take @anapshotof the Erlang system

[0 A snhapshotprogram stateis: the contents of all process
mailboxes, the state of all running processes, messagessitt
(the ether), all nodes, monitors, ...

process P1 process P2 =) = \
Ether

Node A

Node B

m Save the snapshot to memory and forget about it for a while

m Later continue the execution from the snapshot

@) Facultad de Informatica Te St

llllllllllllllllllllllllllllll .
property based testing

Fundamental Difficulties of Model Checking

m Too many states (not enough memory to save all snapshots)
m Checking all states takes too much time

= We have to a snapshot of things outside of Erlang
(hard drives due to disk writes and reads,...)

@) Facultad de Informatica Te St

llllllllllllllllllllllllllllll .
property based testing

The McErlang approach to model checking

m The lazy solution: just execute the Erlang program to vanfthe
normal Erlang interpreter

m And extract the system state (processes, queues, funcinexts)
from the Erlang runtime system

@) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

The McErlang approach to model checking

m The lazy solution: just execute the Erlang program to vanfthe
normal Erlang interpreter

m And extract the system state (processes, queues, functnexts)
from the Erlang runtime system

s Too messy! We have developeaew runtime systemfor the process
part, and still use the old runtime system to execute code natside

effects
Erlang Runtime System McErlang Runtime System
Process coodination and communication McErlang Process coodination and communication
L,7,7,7771 — Fi:iZiiZZZiZZZZZiiZZ:iii:iiiiiiiiiiiiiiiii:i?
Data computation Data computation
(G) Facaitad de nformatica Test

property based testing

Adapting code for the new runtime environment

Erlang code must be “compiled” by the McErlang “compiler’rtm under
the new runtime system:

m API change example: cathicerlang: spawn instead of
erlang: spawn

@) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

Adapting code for the new runtime environment

Erlang code must be “compiled” by the McErlang “compiler’rtm under
the new runtime system:

m API change example: cathicerlang: spawn instead of
erlang: spawn

m These transformations are implemented on HIPE Core Erladg (a
compiler intermediate language)

@) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

Full Erlang Supported?

m Virtually the full core language supported:

[0 Processes, nodes, links, all data types
0 Higher-order functions

Many libraries at least partly supported:

[0 supervisor, gerserver, gerfsm, ets
0 Not supported: gentcp, ...

llllllllllllllllllllllllllllll

Test

property based testing

Full Erlang supported?

No real-time model checking implementation yet

recei ve

X ->X

after 20 -> ...
end

behaves the same as

recei ve

X ->X

after 20000 -> ..
end

ddddddddddddddddddddddddddd

Test

property based testing

Full Erlang supported?

No real-time model checking implementation yet

recei ve

X ->X

after 20 -> ...
end

behaves the same as

recei ve

X ->X

after 20000 -> ..
end

but is different from

recei ve
X -> X
end

ddddddddddddddddddddddddddd

Test

property based testing

Extensions to Erlang in McErlang

m Non-determinacy:

mce_erl:.choice
([fun () -> Pid!hi end,
fun () -> Pid!hola end]).

sends eithehi orhola to Pid but not both

llllllllllllllllllllllllllllll

Test

property based testing

Extensions to Erlang in McErlang

m Non-determinacy:

mce_erl:.choice
([fun () -> Pid!hi end,
fun () -> Pid!hola end]).

sends eithehi orhola to Pid but not both

m Convenience:

mcerlang: spawn
(new_node,
fun () -> Pid! hello_world end)

The nodenew_node is created if it does not exist

llllllllllllllllllllllllllllll

Test

property based testing

Compiling/preparing code for running under McErlang

m All source code modules of a project must be provided to the MoFtrl
compiler

m SomeOTP behaviours/libraries are automatically included atgibe

time
m Example:mcerl_compile -sources *.erl
m The translation is controlled by thHeninfo.txt file

(can be customised)

m The result of the translation is a setk@fam files
(and Core Erlang code for the translated modules)

(Q) Facultad de Informatica Te St

llllllllllllllllllllllllllllll .
property based testing

Controlling Translation

m The filefuninfo.txt controls the remapping of functions and

describes side effects:

[
{ gen_server, [{translated to,mce_erl gen_server 11},
{ supervisor, [{ translated_to,mce_erl_supervisor 11},
{gen_fsm, [{translated to,mce erl gen fsm 11},
{erlang, [{rcv,(false }]},
{{erlang, spawn,4},

[rcv,
{ translated _to, { mcerlang, spawn}}]},

{{erlang,send,2 }, [{translated to, { mcerlang,send }}]},

m A verification project can use its ownninfo.txt

@) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

Choice of Libraries

m McErlang has tailored versions of some librariespervisor
gen_server ,gen_fsm,gen_event ,lists ,ets,...which are

automatically included

m |t may be possible to use the standard OTP libraries instead

Test

(Q) Facultad de Informatica
se® Universidad Poli técnica de Madrid .
property based testing

Running programs under McErlang

m Starting McErlang:

mce:start
(#mce_opts { program= { Module,Fun,Args },
algorithm= { Module,InitArgs },
monitor={ Module,InitArgs)

m Example: starting th&cho program

mce:start
(#mce_opts { program= { example,start, [1},
algorithm= { mce alg_safety,void
monitor= {mce_mon_test,void })

b,

m The result of a model checking run can be retrieved using

mce:result()
(a program trace leading to the bug)

llllllllllllllllllllllllllllll

Test

property based testing

McErlang runtime options

More #mce_opts {} record options:

m shortest = true() | false()
Compute the shortest path to failure? (false)

m fail on_exit = true() | false()
Stop a model checking run if a process terminates abnormaéyto an
uncaught exception (true)

m time_limit = seconds
Halts verification after reaching a time limit

= And many more ...

@) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

Algorithms

An algorithm determines the particular state space expdoratrategy used
by McErlang:

m mce_alg_simulation
Implements a basic simulation algorithm —
following a single execution path

m mce_alg_safety
Checks the specified monitor @il program states

m mce_alg_combine
Combines simulation and model checking to reduce statesspac

(Q) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

What to check: Correctness Properties

Ok, we can run programs under the McErlang runtime system.
Next we need a language for expressing correctness pregerti

ddddddddddddddddddddddddddd

Test

property based testing

What to check: Correctness Properties

Ok, we can run programs under the McErlang runtime system.
Next we need a language for expressing correctness pregerti

m We pick Erlang of course!
A safety monitors an user function with three arguments:

stateChange(State, MonitorState, Action) - >

{ ok, NewMonitorState }.

(Q) Facultad de Informatica Te St

ddddddddddddd .
rrrrrrrrrrrr property based testing

What to check: Correctness Properties

Ok, we can run programs under the McErlang runtime system.
Next we need a language for expressing correctness pregerti

m We pick Erlang of course!
A safety monitors an user function with three arguments:

stateChange(State, MonitorState, Action) - >

{ ok, NewMonitorState }.

m A program is checked by running it in lock-step with a monitor

m The monitor can inspect the current state, and the sidetgffactions)
In the last computation step

m The monitor either returns a new monitor state
{ ok,NewMonitorState }, or signals an error

(Q) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

Safety Monitors

m Safety Monitors check thatothing bad ever happens

m They must be checked ail the states of the program

A0ig

auopiq {[e]'bas}isanoo\{[e]'bai}itexo0|

{[e]'bai}i1ax20]|

q0iy

oig‘auopiy

3583811990

9s8321i19%90

95©9]21{19%90

{[e]'bai}isaxao| {[e]'bai}isaxa0

oip'auopig

doin

%0if| 9Se3|a1i1a%20| 95©3(21{13%90|

A0ig A0is

{[e]'bai}isaxo0|

suopis

{[e]'bai}itax20 {[e]'bai}tizaxyaol\ {[e]'bai}izaxo0| A0it]
{[e]'bai}isaxa0|
9529(21{19390
{[e]'bai}izaxo0|
Noig {[e]'bai}iiaxo0

{[e]'bai}iszoxoo\{[e]'bai}isaxao0|

{pane1sy0}iT

{panre1so}i

{[e]'bai}isaxa0|

A0ig

40ig

gsealalisaxdo)

A0iy

{[e]'bas}isaxa0|

{[e]'bai}itaxo0|

auopiy| {[e]'baitisaxaol\ {[e]'bai}itaxo0| {[e]'bai}isaxo0

{[e]'bai}itaxo0|

A0iy

Test

property based testing

Universidad Politécnica de Madrid

Facultad de Informat

©

A monitor example

s We want to implement a monitor to check that a program altema
between sendingequest andrelease

m As an automaton:

_lrelease
Requesting

_Irequest

_lrelease

((E) Facultad de Informatica Te St

llllllllllllllllllllllllllllll .
property based testing

A monitor example implemented in Erlang

- nodul e(req_rel_alternate).

- expor t ([init/1,stateChange/3,monitorType/O 1).

-behaviour(mce_behav_monitor).

monitorType() - > safety.

init() -> {ok,request }.

stateChange(ProgramState,request,Action) ->
case get_action(Action) of

{ok,request } -> {ok,¢release };
{ ok,release } -> not_alternating
_-> {ok,request }

end; ...
get_action(Action) - >
case mce_erl_actions:is_send(Action) of

true -> {ok,mce_erl actions:get_send msg(Action)
false -> no_action
end.

ddddddddddddddddddddddddddd

Test

property based testing

What can monitors observe®?

Programactionssuch as sending or receiving a message

Programstatesuch as the contents of process mailboxes, names of
registered processes

The values of some program variables
(can be tricky)

Programs can be instrumented with speprabe actionghat are easy
to detect in monitors
(e.qg. callingmce_erl:probe(requesting))

Programs can be instrumented with speprabe stateswhich are
persisten{actions are transient)
(e.g. callingmce_erl:probe_state(have_requested))

@) Facultad de Informatica Te St

llllllllllllllllllllllllllllll

property based testing

Some Predefined Monitors
m mce_mon_deadlock
Checks that there is at least one non-deadlocked process

B Mce_mon_gueue
Checks that all gueues contain at miisixQueueSize elements.

@) Facultad de Informatica Te St

ddddddddddddddddddddddddddd .
property based testing

The McErlang Debugger

m There is a rudimentary debugger for examining counter exasnp

m After a failed model checking run, start the debugger on the
counterexample using:

mce_erl_debugger:start(mce:result()).

() Facaitad do Informatica Test

property based testing

Things that can go wrong

s McErlang runs out of memory — too many states

m McErlang takes too long

s Why? Program uses timers, counters, random values, ..son@#y
too complex

(§ Facultad llel!Icl!"Ol‘lllitil:a Te St

aaaaaaaaaaaaaaaaaaaaaaaaaaa .
property based testing

What can be done

Partial verification — explore part of the state space

[
rolest
property based testing

What can be done

Partial verification — explore part of the state space

Use a (lossy) bounded size state table:

#mce_opts
{...,table= { mce_table_bitHash,Size }, oo}

Use a bounded stack

#mce_opts
{...,stack= { mce_stack bounded,Size }, ... }

Try a more random state space exploration algorithm
(mce_alg _safety rnd)

Put a bound on the verification time

Check smaller examples (a set of test cases)

@) Facultad de Informatica Te St

llllllllllllllllllllllll

dddddd

property based testing

Integration of QuickCheck and McErlang

m Permits to check QuickCheck properties using McErlang axete the
Erlang code

m For normal propertiegqc_statem:commands or
eqc_statem:parallel_commands

@) Facultad de Informatica Te St

llllllllllllllllllllllllllllll .
property based testing

Integration of QuickCheck and McErlang

m Permits to check QuickCheck properties using McErlang axete the
Erlang code

m For normal propertiegqc_statem:commands or
eqc_statem:parallel_commands

m QuickCheck Choices:

0 Use the normal, pretty deterministic, Erlang schedulexexate
programs

@) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

Integration of QuickCheck and McErlang

m Permits to check QuickCheck properties using McErlang axete the
Erlang code

m For normal propertiegqc_statem:commands or
eqc_statem:parallel_commands

m QuickCheck Choices:

0 Use the normal, pretty deterministic, Erlang schedulexexate
programs

[0 Use Pulse to check program under a more random scheduler

@) Facultad de Informatica Te St

llllllllllllllllllllllllllllll .
property based testing

Integration of QuickCheck and McErlang

m Permits to check QuickCheck properties using McErlang axete the
Erlang code

m For normal propertiegqc_statem:commands or
eqc_statem:parallel_commands

m QuickCheck Choices:

0 Use the normal, pretty deterministic, Erlang schedulexexate
programs

[0 Use Pulse to check program under a more random scheduler
[0 Use McErlang to check program under potentiallyschedulings

@) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

Integration of QuickCheck and McErlang

m Permits to check QuickCheck properties using McErlang axete the
Erlang code

m For normal propertiegqc_statem:commands or
eqc_statem:parallel_commands

m QuickCheck Choices:

0 Use the normal, pretty deterministic, Erlang schedulexexate
programs

[0 Use Pulse to check program under a more random scheduler
[0 Use McErlang to check program under potentiallyschedulings

m McErlang interface currently distributed with QuickCheck

@) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

QuickCheck integration: example

proxy(Pid) - >
spawn(fun() ->
receive Msg ->
end).

Pid ! Msg end

proxy(0, Pid) -> Pid,

proxy(N, Pid) ->

Proxy = proxy(N-1, Pid),

proxy(Proxy).

world_hello(N) ->

C = sel (),

Bl = proxy(l, C),
B2 = proxy(N, C),
A = spawn(fun()
Msgl
Msg?2
{ Msgl, Msg2}.

llllllllllllllllllllllllllllll

- > B1! hello, B2

receive Msgl -> Msgl
receive Msg2 -> Msg2

I world
end,
end,

end),

Test

property based testing

As a graph

world

P

m P sendsvorld to 1, who forwardsto 2, ..., to N-1,to N, which

eventually sends it back to P

s And P sends$ello to Q, which directly sends it back to P

llllllllllllllllllllllllllllll

Test

property based testing

As a graph

world

) P

Q
- 4
hello

m P sendsvorld to 1, who forwardsto 2, ..., to N-1, to N, which
eventually sends it back to P

s And P sends$ello to Q, which directly sends it back to P

m In what order isvorld andhello received at P?

Test

(é) Facultad de Informatica
property based testing

L ¥ Universidad Politécnica de Madrid

As a graph

Q
- 4
hello

world

P

m P sendsvorld to 1, who forwardsto 2, ..., to N-1, to N, which
eventually sends it back to P

s And P sends$ello to Q, which directly sends it back to P
m In what order isvorld andhello received at P?

m |f N is sufficiently large, almost alwaysello Is received first at P, and

thenworld
(é) Facultad de Informatica Te St

lllllllllllllll .
''''''''''''''''' property based testing

Checking “correct reception” in QuickCheck

- modul e(proxy_eqc).

prop_world _hello() ->
?FORALL(
1,
1,
world_hello(100) == { hello,world }

).

llllllllllllllllllllllllllllll

Test

property based testing

Checking “correct reception” in QuickCheck

- modul e(proxy_eqc).

prop_world _hello() ->
?FORALL(
1,
1,
world_hello(100) == { hello,world }

).
Checking:
> erl

Erlang R14B03 ...

1> c(proxy_eqc).
{ ok,proxy_eqc }
2> eqc:quickcheck(proxy eqc:prop_world_hello()).

llllllllllllllllllllllllllllll

Test

property based testing

Checking “correct reception” in QuickCheck and
McErlang

- nodul e(proxy_mce).

-include_lib("eqgc_mcerlang/include/eqc_mcerlang.hrl ".

prop_world _hello_mce() ->
mce_app:set_verification_algorithm(mce_alg_safety r nd),
?FORALL(
1,
1,
?MCERLANG(
[?MODULE,
Res,
world_hello(100),
Res == { hello,world }

).

@) Facultad de Informatica Te St

llllllllllllllllllllllllllllll .
property based testing

Checking using QuickCheck+McErlang

> erl
Erlang R14B03 ...

1> mce_app:start().

ok

2> mce_erl_compile:file("proxy_mce.erl", [{ outdir,"." 11).
{ ok, [proxy _mce]}

3> eqc:quickcheck(proxy _mce:prop_world_hello_mce()).

@) Facultad de Informatica Te St

llllllllllllllllllllllllllllll .
property based testing

Integrating with QuickCheck testing: options

When programs are too complex to fully verify, model chegdnecomes a
form of controlled testing:

m The amount of memory and time available to verify a programha
controlled (a verification attempt can beonclusive

m Randomized (wrt. state space exploration order) veriboagigorithms

are available (thus repeating a verification run can expiere parts of
the state space)

m Randomized state storage data structures are availablenion’s
bitspace algorithms)

() Facaitad do Informatica Test

property based testing

McErlang in Practise: downloading

= Web page:
https://babel.ls.fi.upm.es/trac/McErlang/

m Use subversion to check out the McErlang sources:

svn checkout \

https://babel.ls.fi.upm.es/svn/McErlang/trunk \
McErlang

m Precompiled versions are avaible too

llllllllllllllllllllllllllllll

Test

property based testing

Installing and Documentation

m We use Ubuntu — McErlang doesn’t work well under Windows

m Compile McErlang:

cd McErlang; ./configure; make release

m Installing McErlang among normal Erlang libraries:

> cd release/McErl *
> erl
Erlang R14B03 ...

1> mcerlang_install:install().

m Read the manuals:

acroread doc/tutorial/tutorial.pdf
acroread doc/userManual/userManual.pdf

() Facaitad do Informatica Test

property based testing

McErlang in practise: The Elevator Example

m We study the control software for a set of elevators
Ll evators [= 5]

Cﬂmel

Cﬂmel

Cﬂmel

m Used to be part of an Erlang/OTP training course from Eriesso

((E) Facultad de Informatica Te St

lllllllllllllllllllllllllllllll .
property based testing

The Elevator Example

Example complexity:

m Static complexity: around 1670 lines of code

s Dynamic complexity: around 10 processes (for two elevators

m Uses quite a few librariesists , gen_event , gen_fsm,
supervisor ,timer ,gs, application

7:e_graphic (gen_fsm) 8:e_graphic (gen_fsm) 10:elevator (gen_fsm) 11:elevator (gen_fsm)

() Facaitad do Informatica Test

property based testing

Running the elevator under McErlang

m First we just try to run it under the McErlang runtime system
(forgetting about model checking for a while)

m This will test the system under a less deterministic sclexdbbn the
normal Erlang scheduler

(Q) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

Running the elevator under McErlang

m First we just try to run it under the McErlang runtime system
(forgetting about model checking for a while)

m This will test the system under a less deterministic sclexdbbn the
normal Erlang scheduler

m EXxecuting:

mce:start
(#mce_opts
{ program= { sim_sup,start_link, [1,3,2]},
sim_external world=true,
algorithm=mce_alg_simulation).

@) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

Running the elevator under McErlang

First we just try to run it under the McErlang runtime system
(forgetting about model checking for a while)

This will test the system under a less deterministic sclexdbbn the
normal Erlang scheduler

Executing:

mce:start
(#mce_opts
{ program= { sim_sup,start_link, [1,3,2]},
sim_external world=true,
algorithm=mce_alg_simulation).

Seems to work...

@) Facultad de Informatica Te St

llllllllllllllllllllllllllllll

property based testing

Model checking the elevator under McErlang

Model checking is a bit more complicated:

ddddddddddddddddddddddddddd

Test

property based testing

Model checking the elevator under McErlang
Model checking is a bit more complicated:

m Thegs graphics will not make sense when model checking
We shut it off in model checking mode

@) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

Model checking the elevator under McErlang

Model checking is a bit more complicated:

m Thegs graphics will not make sense when model checking
We shut it off in model checking mode

m The example is very geared to smooth graphical dispiay

We modify the program to only have three (3) intermediate{soi
between elevator floors (normally 20)

@) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

Model checking the elevator under McErlang
Model checking is a bit more complicated:

m Thegs graphics will not make sense when model checking
We shut it off in model checking mode

m The example is very geared to smooth graphical dispiay

We modify the program to only have three (3) intermediate{soi
between elevator floors (normally 20)

m The program contain timers (for moving the elevater)

We assume that the programmginitely fastcompared to the timers:
timer only release when no program action is possible

@) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

Model checking the elevator under McErlang
Model checking is a bit more complicated:

m Thegs graphics will not make sense when model checking
We shut it off in model checking mode

m The example is very geared to smooth graphical dispiay

We modify the program to only have three (3) intermediate{soi
between elevator floors (normally 20)

m The program contain timers (for moving the elevater)

We assume that the programmginitely fastcompared to the timers:
timer only release when no program action is possible

m [n total, about 15 lines of code had to be changed to enableimod
checking -not too bad!

(Q) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

Scenarios

m Instead of specifying one big scenario with a really bigestgdace, we
specify a number of smaller scenarios

m Paremeters:
Number of elevators
Number of floors

Commands
[{ scheduler,f_button_pressed, [1]},
{ scheduler,e_button_pressed, [2,1]},
{ scheduler,f_button_pressed, [1] }]

m QuickCheck can be used to generate a set of scenarios

@) Facultad de Informatica Te St

llllllllllllllllllllllllllllll .
property based testing

Correctness Properties for the Elevator System

What are good correctness properties for the Elevator syste

ddddddddddddddddddddddddddd

Test

property based testing

Correctness Properties for the Elevator System

What are good correctness properties for the Elevator syste

= No runtime exceptions

ddddddddddddddddddddddddddd

Test

property based testing

Correctness Properties for the Elevator System
What are good correctness properties for the Elevator syste

= No runtime exceptions

m An elevator only stops at a floor after receiving an order tagathat
floor

@) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

Correctness Properties for the Elevator System
What are good correctness properties for the Elevator syste

= No runtime exceptions

m An elevator only stops at a floor after receiving an order tagathat
floor

m [f there is a request to go to some floor, eventually some &levall
stop there

@) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

Checking absence of exceptions

[
rolest
property based testing

Checking absence of exceptions

= NoO runtime exceptions

[
rolest
property based testing

Checking absence of exceptions

= NoO runtime exceptions

m Checking:

> mce:start(#¥mce_opts
{ program= { run_scenario,run_scenario,
[2,2, [{scheduler,f button pressed,
algorithm= { mce_alg_safety,void }}).

ddddddddddddddddddddddddddd

[11311},

Test

property based testing

Checking absence of exceptions

= NoO runtime exceptions

m Checking:

> mce:start(#¥mce_opts
{ program= { run_scenario,run_scenario,
[2,2, [{scheduler,f button pressed,
algorithm= { mce_alg_safety,void }}).

m Result:

** User code generated error:
exception error due to reason { badmatch, []}
Stack trace:
scheduler:add _to_a_ stoplist near line 344/3
scheduler:handle cast/2

ddddddddddddddddddddddddddd

[11311},

Test

property based testing

Checking absence of exceptions

= NoO runtime exceptions

m Checking:

> mce:start(#¥mce_opts
{ program= { run_scenario,run_scenario,
[2,2, [{scheduler,f button pressed, [1]1}11]},
algorithm= { mce_alg_safety,void }}).

m Result:

** User code generated error:
exception error due to reason { badmatch, []}
Stack trace:
scheduler:add _to_a_ stoplist near line 344/3
scheduler:handle cast/2

m Bug - the system received the “press button”-command beforadt h
been initialised

@) Facultad de Informatica Te St

llllllllllllllllllllllllllllll .
property based testing

*Hiding the bug”

m [nstead of fixing the bug we hide it by only sending commandsiwh
the system has started by enabling the option
IS_infinitely fast=true

m Checking:

> mce:start(#mce_opts
{ program= { run_scenario,run_scenario,

[2,2, [{scheduler,f button_ pressed, [1]}11},
IS_infinitely fast=true,
algorithm= { mce_alg_safety,void }}).

() Facaitad do Informatica Test

property based testing

Checking Safety Properties

[
rolest
property based testing

Checking Safety Properties

m An elevator only stops at a floor after receiving an order tagathat
floor

m We use ssafety monitoto implement the property. Remember:

0 A safety monitor runs in parallel (lock-step) with the pragr

(Q) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

Checking Safety Properties

m An elevator only stops at a floor after receiving an order tagathat
floor

m We use ssafety monitoto implement the property. Remember:

0 A safety monitor runs in parallel (lock-step) with the pragr

0 A monitor has an internal state, which can be updated when the

program does aignificantaction (or something happensa—
button presk

() Facaitad do Informatica Test

property based testing

Checking Safety Properties

m An elevator only stops at a floor after receiving an order tagathat
floor

m We use ssafety monitoto implement the property. Remember:

0 A safety monitor runs in parallel (lock-step) with the pragr

0 A monitor has an internal state, which can be updated when the

program does aignificantaction (or something happensa—
button presk

0 The monitor should signal an error if an action happens in an
Incorrect state

() Facaitad do Informatica Test

property based testing

Significant Events

Which elevator events do the monitor need to react to?

ddddddddddddddddddddddddddd

Test

property based testing

Significant Events

Which elevator events do the monitor need to react to?

m Button presses in the elevator

ddddddddddddddddddddddddddd

Test

property based testing

Significant Events

Which elevator events do the monitor need to react to?

m Button presses in the elevator

m Button presses at each floor

ddddddddddddddddddddddddddd

Test

property based testing

Significant Events

Which elevator events do the monitor need to react to?

m Button presses in the elevator
m Button presses at each floor

m [he arrival of the elevator at a floor

ddddddddddddddddddddddddddd

Test

property based testing

State and Correctness Check

m What is the state of the monitor?

[
rolest
property based testing

State and Correctness Check

m What is the state of the monitor?

A data structure that remembers orders to go to a certain floor

@) Facultad de Informatica Te St

llllllllllllllllllllllllllllll .
property based testing

State and Correctness Check

m What is the state of the monitor?

A data structure that remembers orders to go to a certain floor

m \What is the correctness check?

@) Facultad de Informatica Te St

llllllllllllllllllllllllllllll .
property based testing

State and Correctness Check

m What is the state of the monitor?
A data structure that remembers orders to go to a certain floor
m What is the correctness check?

When the elevator arrives at a floor, the order to do so Is imtbeitor
state

@) Facultad de Informatica Te St

llllllllllllllllllllllllllllll .
property based testing

A Monitor Implementing the Floor Request Property

- nodul e(stop_after _order).
-behaviour(mce_behav_monitor).

%o The nonitor state i1s a set of floor requests
init() - > ordsets:new().

%% Cal | ed when the program changes state
stateChange(_,FloorReqgs,Action) ->
case interpret_action(Action) of
{f button,Floor } o->
ordsets:add_element(Floor,FloorReqs);

{ e button,Elevator,Floor } ->
ordsets:add_element(Floor,FloorReqs);
{ stopped_at,Elevator,Floor } -
case ordsets:is_element(Floor,FloorReqs) of
true -> FloorRegs;
false -> t hrow { bad_stop,Elevator,Floor)
end;
_ -> FloorReqgs
(G) Facuitas 'elnsﬂ'r'ltga Test

property based testing

Checking the first correctness property

m Checking:

> mce:start(#mce_opts
{ program= {run_scenario,run_scenario,

[3,2, [{scheduler,f button pressed, [3]}]1]},
Is_infinitely fast=true,
algorithm= { mce_alg_safety,void },
monitor= { stop_after_order,void).

m Fails...

m We display the counterexample (a program trace) using awugtetty
printer:

Floor button 3 pressed

Elevator 1 is moving up
Elevator 1 is approaching floor 2
Elevator 1 is stopping

Elevator 1 stopped at floor 2

@) Facultad de Informatica Te St

lllllllllllllll .
""""""""""""""" property based testing

More Correctness Properties

m Refining the floor correctness property:

An elevator only stops at a floor after receiving an order tagthat
floor, if no other elevator has met the request

(implemented as a monitor that keeps a set of floor requastied
floors are removed from the set)

() Facaitad do Informatica Test

property based testing

More Correctness Properties

m Refining the floor correctness property:

An elevator only stops at a floor after receiving an order tagthat
floor, if no other elevator has met the request

(implemented as a monitor that keeps a set of floor requastied
floors are removed from the set)

m A Livenesgroperty:

If there is a request to go to some floor, eventually some &levall
stop there

() Facaitad do Informatica Test

property based testing

Checking Liveness Properties

m For expressing thaomething good eventually happens

m Linear Temporal Logic (always, eventually, until, next,).is used to
express liveness properties

m State predicates are Erlang functions

s Example:

always(fun liftprop:go _to floor/3 =>
eventually f un liftprop:stopped_at floor/3)

m State predicate:

go_to_floor(_ProgramState,Action, PrivateData) ->
case interpret_action(Action) of
{f button,Floor } -> {true,Floor };
{ e _button, ,Floor } -> {true,Floor };
B - > false
end.
() Facaitad do Informatica Test

property based testing

McErlang Status and Conclusions

m Supports a large language subset (full support for digiohwand
fault-tolerance and many higher-level components)

m Everything written in Erlang
(programs, correctness properties, ...)

m An alternative implementation of Erlang for testing
(using a much less deterministic scheduler)

m Using McErlang and testing tools like QuickCheck can be
complementary activities:

0 Use QuickCheck to generate a set of test scenarios

[0 Run scenarios in McErlang

(Q) Facultad de Informatica Te St

llllllllllllllllllllllllllllll .
property based testing

	McErlang basics
	McErlang In Practise: A Really Small Example
	Example under normal Erlang
	Example under McErlang
	Investigating the Error
	Error Cause
	Presentation Outline
	Model Checking: Basics
	Testing Concurrent Programs
	Step-by-step execution of Erlang Programs
	Fundamental Difficulties of Model Checking
	The McErlang approach to model checking
	Adapting code for the new runtime environment
	Full Erlang Supported?
	Full Erlang supported?
	Extensions to Erlang in McErlang
	Compiling/preparing code for running under McErlang
	Controlling Translation
	Choice of Libraries
	Running programs under McErlang
	McErlang runtime options
	Algorithms
	What to check: Correctness Properties
	Safety Monitors
	A monitor example
	A monitor example implemented in Erlang
	What can monitors observe?
	Some Predefined Monitors
	The McErlang Debugger
	Things that can go wrong
	What can be done
	Integration of QuickCheck and McErlang
	QuickCheck integration: example
	As a graph
	Checking ``correct reception'' in QuickCheck
	Checking ``correct reception'' in QuickCheck and McErlang
	Checking using QuickCheck+McErlang
	Integrating with QuickCheck testing: options
	McErlang in Practise: downloading
	Installing and Documentation
	McErlang in practise: The Elevator Example
	The Elevator Example

