QuviQ

Software Testing with
QuickCheck

Lecture 1
Properties and Generators

Testing Q

* How do we know software works?
— We test it!

e "lists:delete removes an element from a list”

4> lists:delete(2,[1,2,3]).
[1,3]

5> lists:delete(4,[1,2,3]).
[1,2,3]

e ...seems to work!

Automated Testing Q

e Testing accounts for ~50% of software cost!
 Automate it... write ance, run often

,e_absent_tr

ligts:dele

miss
something

Property-based testing Q

* Generalise test cases V{I,L} € int() x list(int())

prop delete() ->
?FORALL ({I, L},

{int () ,1list(int()) },
not lists:member (I,
lists:delete(I,L))).

21> eqc:quickcheck (examples:prop delete()) .

OK, passed 100 tests

Properties Q

Bound variable

?FORALL(N, int(), N*N >= 0)

Test case

senerator Test oracle

* We test directly against a formal specification

More tests...

29> eqc:quickcheck (eqc:numtests (1000, examples:prop delete())).

...Failed! After 346 tests.
{21[_71_131_151212]} Afa||ed test
Shrinking. (1 times)

{2,[2,2]}

false
aﬁ?FORALL({I,L},m,m)

A simplest failing
test

The fault explained

lists:delete(2,[2,2])

!

lists:member(2,[2])

!

not true

!

false

Properties wit

no duplicates (L) ->

* The property lists:usort (L)
dUpIicates == lists:sort(L).

prop delete() ->
?FORALL({I,L},
{int() ,1list(int())},

?IMPLIES (no duplicates (L),
not lists:member (I,lists:delete(I,L)))).

39> eqc:quickcheck (examples:prop delete()).

> S X..
OK, passed 100 tests

Skipped tests

Custom generators Q

 Why not generate lists without duplicates in
the first place?

First:
generate a
list L

ulist(Elem) ->
?LET (L,list(Elem),
lists:usort(L)).

e Useas ?FORALL (L ,ulx I

* Generators are an abstra and remove
?LET for sequencing duplicates

Why was the error hard to find? Q

» [€ 1nt() Q» What is the probability that /
« [& list(int()) | occursin [—twice?

prop delete() ->
?FORALL ({I,L},
{int() ,1list(int())},

collect(lists:member (I,L),

not lists:member (I,lists:delete(I,L))).

34> eqc:quickcheck (examples:prop delete()).

OK, passed 100 tests

ig: ialse Usually I doesn’teven
rue
o occur once

Generate relevant tests Q...

e Ensure that I jsa member of L
— Generate it from L

prop delete 2() ->
?FORALL (L,list (int()),

?FORALL (I,elements (L),
not lists:member (I,lists:delete(I,L)))).

45> eqc:quickcheck (examples:prop delete 2()).

XX . X. X.XX...X.X...X....X..0.... XX..... Failed! After 28 tests.
[_810/7/0]

0

Shrinking... (3 times)

[0,0]

0

Documenting misconceptions Q

* Useful to record that an expected property is
not true

prop delete misconception() ->

fails (
?FORALL (L, list (int()),

?IMPLIES (L /= [],
?FORALL (I,elements (L),

not lists:member(I,lists:delete(I,L)))))).

49> eqc:quickcheck (examples:prop delete misconception()).
OK, failed as expected. After 19

Good distribution ensures we

falsify the property quickly

Remember!

* We test against a formal specification!

— Often it is the specification which is wrong!

e We don’t see the test data!

— 100 passing tests can give a false sense of
security

* Collect statistics!
— Ensure a good test case distribution

'®

®)!
®)J

® ¥

Exercises

QuviQ

