
eTorrent - writing P2P clients in Erlang
Analysis, Implementation, Philosophy

Jesper Louis Andersen
jesper.louis.andersen@gmail.com

Mar, 2012



Overview

“And now for something completely different”



Peer-to-peer: Make each client a client+server at the same time.

We are betting this is the future.
BitTorrent is a P2P protocol for content distribution.
Excellent vehicle for studying P2P ideas.

If we need a cloud which is decentralized, it is necessary.



HTTP vs BitTorrent

BitTorrent is about Content distribution. Some key differences:

HTTP

I Simple

I Stateless

I One-to-many

I “Serial”

I Upstream bandwidth
heavy

BitTorrent

I Complex

I Stateful

I Peer-2-Peer

I “Concurrent”

I Upstream bandwidth
scales proportionally
with number of
consumers

In BitTorrent everything is sacrificed for the last point.



One Slide BitTorrent

I Want to distribute an array of bytes (i.e., a file)

I Utilize concurrency to do it!

I Split file into pieces, exchange them

I Key point 1: One process per peer – crash doesn’t matter

I Key point 2: Once a piece passes integrity check, shove it to
stable storage.



“BitTorrent is just a simple specialization of Erlang Process
semantics”



Etorrent – History

Etorrent - A bittorrent client implemented in Erlang

I Erlang/OTP implementation

I Initial Checkin, 27th Dec 2006

I Had first working version around early 2008

I 8 KSLOCs

I Two main developers: Magnus Klaar, Jesper Louis Andersen

I Contributions: Edward Wang, Adam Wolk, Maxim Treskin,
Peter Lemenkov, Michael Uvarov and Tuncer Ayaz.



Building it:

I Async messaging!

I Fault tolerance and stable storage makes it robust!

I Built in Concurrency!

I Basic idea for contributions: Get them in, then get them right.

I The contributor is more important than the patch

I Follow Linus Torvalds: Your primary purpose is to get out of
the way so people can do work.



Etorrent Supervisor Tree:

Legend

Torrent

simple_one_for_one

one_for_one

one_for_all

etorrent_sup

listen_sup

dht

dirwatcher_sup

torrent_pool

udp_tracker_sup

torrent_sup

udp_pool

udp_proto_sup

io_sup

peer_pool

file_io_sup

peer_sup



Fight unfair

I Change the algorithm, use fewer operations

I Often possible!

I Heuristics: The common case should be fast at the expense of
everything else

I Approximations: Don’t go for optimal where near-optimal is
equally good and much faster.



Fight unfair

I Change the algorithm, use fewer operations

I Often possible!

I Heuristics: The common case should be fast at the expense of
everything else

I Approximations: Don’t go for optimal where near-optimal is
equally good and much faster.



Fight unfair

I Change the algorithm, use fewer operations

I Often possible!

I Heuristics: The common case should be fast at the expense of
everything else

I Approximations: Don’t go for optimal where near-optimal is
equally good and much faster.



New stuff:

I µtp protocol prototype

I Used in BitTorrent clients

I This beast is, essentially, a TCP implementation + stuff

I Lets do that in Erlang!



WHY? TCP is in trouble

I The problem are buffers on the connection “path”.

I No buffers is a problem, (See Scott L. Fritchie)

I http://www.snookles.com/slf-blog/2012/01/05/

tcp-incast-what-is-it/

I Too large buffers is a problem (See Jim Gettys)

I http://gettys.wordpress.com/category/bufferbloat/

http://www.snookles.com/slf-blog/2012/01/05/tcp-incast-what-is-it/
http://www.snookles.com/slf-blog/2012/01/05/tcp-incast-what-is-it/
http://gettys.wordpress.com/category/bufferbloat/


I TCP uses packet loss to detect congestion

I “bufferbloat” or “dark buffers” messes with the packet loss

I Idea of µtp: measure the latency of the line and use that for
congestion control.



I Very little documentation (“It’s like TCP .. but”)

I C++ reference implementaion – reverse engineering starts

I Change Control Flow oriented code to Data Flow oriented
code.

I Implement a TCP-like stack in Erlang

I Once we get the model right, this is awfully easy!



Application uTP stack
send/2
recv/2

Internet

out

Timer
timer event

in



I Key insight no. 1: Find a good process split

I Key insight no. 2: Find a good data split



uTP Supervisor Tree:

Legend

simple_one_for_one

one_for_one

one_for_all

utp_sup

tracer

gen_utp

decoder

worker_pool

worker_1

worker_2



State

Network Process Buffer

Socket



I Key insight no 3: Avoid Boolean Blindness

I Suppose we compute E to true

I We have no evidence why E is true.

I true carries no additional meaning so we, as programmers,
must know. It is but 1 bit of data.

I true is no proof

I Be worried about booleans, prefer constructing more
structured terms which tell

I Match on terms!



case length(List) == 0 of

true -> ...;

false -> ... H = hd(List) ... T = tl(List)

end,

case List of

[] -> ...

[H | T] -> ...

end

Worrying thought: Whenever you do a boolean you may be doing
ex1 here!
Equality is the scourge of computing!



I Write an analyzer returning a term / data type providing
evidence

I Write an executor case..end on the analysis

I Splits concerns

I Avoids you having to recompute the evidence of “why”

I Gives additional information



handle_receive_buffer(SeqNo, Payload,

PacketBuffer, State) ->

case update_recv_buffer(SeqNo, Payload,

PacketBuffer, State) of

duplicate -> {PacketBuffer, [{send_ack, true}]};

{ok, #buffer{} = PB} ->

{PB, consider_send_ack(PacketBuffer, PB)};

{got_fin, #buffer{} = PB} ->

{PB, [{got_fin, true},

{send_ack, true}]}

end.



Current State

I Our µtp stuff works - about 80 percent implemented

I Tested with Linux NetEM locally and over the internet

I Can’t talk with the reference implementation – yet.



I https://github.com/jlouis/etorrent

I Questions?

https://github.com/jlouis/etorrent

