

Metaprogramming
for the Masses

Richard Carlsson

Klarna

Metaprogramming

Writing programs that create or manipulate
data structures that represent programs

Homoiconic languages

“...in that their internal and external representations
are essentially the same” - Alan Kay

(ADD 2 3) ; LISP code
'(ADD 2 3) ; LISP data
(EVAL '(ADD 2 3)) ; interpreting data as code

Erlang is not one of them

case X + 1 of ... % Erlang code

{foo, 42, [...]} % Erlang data

Scanning and parsing

Text = "foo:bar(baz,17)."
{ok, Toks, _Line} = erl_scan:string(Text, L0).
{ok, Exprs} = erl_parse:parse_exprs(Toks).
Exprs = [{call,1,{remote,1,{atom,1,foo},
{atom,1,bar}},[{atom,1,baz},{integer,1,17}]}]

erl_parse:parse_form/1
erl_parse:parse_term/1

The abstract format

{atom,L5,foo} {atom,L6,bar}

{atom,L3,baz} {integer,L4,17}{remote,L2,M,F}

{call,L1,Function,[A1,A2]}

http://www.erlang.org/doc/apps/erts/absform.html

Not nearly abstract enough

● Explicit tuple representation
● Unnecessary details (line numbers)
● Ad hoc, context dependent

– Should it be 'foo' or {atom,L,'foo'}?

– {record_field,...} used for multiple things

● New format changes break existing code
● No room for additional info/annotations

Syntax Tools

● erl_syntax module provides proper
abstract datatype for Erlang syntax trees

● Hides details, adds annotations, comments
● Not context dependent
● Can take “abstract format” trees as input
● Generic functions for traversal etc.
● Must revert to standard abstract format

before passing to compiler

Still rather too verbose

1> Tree =
erl_syntax:application(erl_syntax:module_qualifier
(erl_syntax:atom(foo), erl_syntax:atom(bar)),
[erl_syntax:atom(baz),erl_syntax:integer(17)]).
2> erl_prettypr:format(Tree).
"foo:bar(baz, 17)"

Step-by-step decomposition

case erl_syntax:type(Tree) of
 application ->
 Op = erl_syntax:application_operator(Tree),
 case erl_syntax:type(Op) of
 module_qualifier ->

 M = erl_syntax:module_qualifier_argument(Op),

 F = erl_syntax:module_qualifier_body(Op),

 ...

Plain tuples allow matching

case Tree of
 {call,_,{remote,_,{atom,_,foo},{atom,_,bar}},
[A1, A2]} ->
 %% found a call to foo:bar/2!
 … ;
 _ ->
 %% something else

What if erl_syntax had patterns?

15 years later

A simple DSL for business logic

● Once, as a very young company, Klarna
had all the business logic in Erlang code

– Management/Finance could not read it

– Developers required both to change logic
and to explain the current logic

– Code upgrade necessary for all changes

– No trace of how decisions were made

Tobbe's first draft

● Simple decision engine by Tobbe, using
Erlang tuples & lists to express rules:

– {first, […]} % orelse operator

– {all, […]} % andalso operator

– {equal, X, Y}, {plus, X, Y}, …

– “input variables” (dict as input to engine)

● Still in Erlang (though in a single place)
– Still mostly unreadable to non-developers

From the mouths of babes

Bumped into CEO in the corridor

“Can't you visualize the rules for us like in
the Wiki, with labels and bullet points?”

Why not use Wiki syntax as DSL

== RuleName ==
Blah blah comments blah.
* person.age > 18
* person.country = "SE"

The things we wanted to express seemed to
match the basic MediaWiki notation well

● JavaScript semantics for values, names, and operators

● Input environment defined as a JSON structure

Easily nested conditionals

== Allowed to Purchase ==
* first of
** person.is_vip
** person.income >= limits.min_income
** all of
*** person.country = "FI"
*** [[#Finnish Special Cases]]

Rules can be pasted into MediaWiki, no translation needed

Calls become clickable links

[[#Name Of Rule]]
● No worse than any other syntax for calls
● Rules can take parameters

== Some Rule ==

* input(x)

* x > 42

● Passing parameters: [[#Some Rule]](99)

The good

● Non-developers can read and mostly
understand the rules

– Could start writing new rules pretty quickly

● Rules updated separately from code
● Rules engine can save evaluation traces

for later analysis or debugging
● All rules in one place, not mixed up with

system implementation details

The bad

● As in Prolog, negative rules become tricky
● “Make a yes or no decision” soon changed

to “...and also compute an output value”
– “...Actually, compute two output values

...or in fact, dozens of them”

● Language extended to manipulate state
● People didn't quite “get” backtracking that

rolls back the state to the choice point

Where do we go now?

● We now have thousands of lines of rules
● It has served us well for a few years
● Would like to take lessons learned and

rework the entire language
– Will probably not have time for that

● Switch to a “real” business rules engine
– Eresye? Or some “enterprise” system?

Implementation

● First version: interpreter (in Erlang)
– Pretty easy to write

– Fairly easy to tweak and debug

– Non-Erlangish semantics of the actual DSL
is not a big problem when interpreting

● Hard to share a large data structure (the
rules) between processes in Erlang

● Single evaluation server holding the current
rule set

Compiling for parallellism

● As our system load got heavier, we saw
more need for running rules in parallel

● Beam modules are shared (read-only)
between Erlang processes – no execution
bottleneck

● Compile one “rule namespace” to a single
Erlang module

– Planned for compilation from the start

Code generation

● Generate Erlang code (not Core Erlang) to
ensure complete safety and sanity checks

– Compile and load directly to memory

● Different semantics of DSL (working on
JSON structures) causes verbose code

– From an input file of 5 K lines of rules

– To 50 K lines of (prettyprinted) Erlang

– Compiles to 600+ KB beam image in 10 s

– The DSL is very compact

Writing the code generator got me thinking...

...maybe I should try out that old idea...

Merl

or

Why the hell didn't I do this years ago?

Smart parsing

1> merl:quote("X+1").
{op,1,'+',{var,1,'X'},{integer,1,1}}

2> merl:quote("X + 1, Y - 1").
[{op,1,'+',{var,1,'X'},{integer,1,1}},

 {op,1,'-',{var,1,'Y'},{integer,1,1}}]

3> merl:quote("foo -> bar").
{clause,1,[{atom,1,foo}],[],[{atom,1,bar}]}

4> merl:quote("f(X) -> X+1.").
{function,1,f,1,[{clause,1,[{var,1,'X'}],...}

Multiline quotes

merl:quote(["-module(foo).",
 "-export([f/1]).",
 "f(X) -> {ok, X}."])

[{attribute,1,module,foo},
 {attribute,2,export,[{f,1}]},
 {function,3,f,1,
 [{clause,3,[{var,3,'X'}],[],
 [{tuple,3,[{atom,3,ok},{var,3,'X'}]}]}]}]

Metavariable substitution

B = merl:term([1,2,3]),
T = merl:qquote("{foo, _@bar}",
 [{'bar', B}])

erl_prettypr:format(T).
"{foo, [1, 2, 3]}"

● “Quasi-quote”: a phrase containing meta-
variables

Metavariables for all occasions

● Variables: _@foo

merl:qquote("{ok, _@foo}", ...)

● Atoms: '@bar'

merl:qquote(" '@bar'(X) -> X + 1. ", ...)

● Integers: 909NN

merl:qquote(" -export([foo/9091]). ", ...)

● Strings: " '@xyz "

merl:qquote(" -file(\"'@path\", 1). ", ...)

● _@_foo, '@_foo'

● T = merl:qquote("-export(['@_foo'/1])",

 [{foo, merl:term(42)}]).

erl_prettypr:format(T).

"-export([42])"

Lifted metavariables

-export([]).

/

'@_foo' 1

Macros FTW

-include("merl.hrl").

T1 = ?Q("{baz, 42}"),
T2 = ?Q("{foo, 17, _@bar},", [{bar, T1}])

● Short and sweet
● ?Q with either 1 argument or 2
● Passes on line number from source file to

provide useful parse errors

Matching

● Pat = ?Q("{_@x, _@y}")
● {ok, [{x,First}, {y,Second}]} =

 merl:match(Pat, ?Q("{1,2}"))
● error = merl:match(Pat, ?Q("{1,2,3}"))
● Anonymous metavariables: @_

{ok, [{y,Second}]} =

 merl:match(?Q("{_@_, _@y}"),?Q("{1,2}"))

Synchronicity

● Showed early version to Simon Thompson
in London 2011

– “Oh, that looks a lot like what we just did
for writing refactorings in Wrangler!”

● Upped the ante
● Conference-driven development!

– Agreeing to talk about it in SF provided
motivation to work on improvements

Glob metavariables in matches

● @@foo

Pat = ?Q("f(_@@args)"),

{ok, [{args, As}]} =

 merl:match(Pat, ?Q("f(1,2,3)"))

● Combines with lifting: @_@foo

Pat = ?Q("-export(['@_@x'/1])."),

{ok, [{x,[F,G]}]} =

 merl:match(Pat,?Q("-export([f/1,g/2])."))

Globs with static prefix/suffix

● Pat = ?Q("f(_@a, _@b, _@@rest, _@c)"),

merl:match(Pat, merl:quote("f(1,2,3,4,5)")).

{ok, [{a, {integer,_,1}}, {b, {integer,_,2}},

 {c, {integer,_,5}},

 {rest, [{integer,_,3},{integer,_,4}]}]}

● Result from successful match is always
ordered on the metavariable names

Template data structures

● The result from quote/1 or qquote/1 is an
abstract syntax tree (erl_syntax)

● To do variable substitution or matching,
trees are converted to a more efficient form
called templates

● qquote/2 calls the subst/2 function, which
accepts both trees and templates as input

● If you are going to do multiple matches or
substitutions, call template/1 once for all

Parse transform magic

● Including merl.hrl enables the transform

Define MERL_NO_TRANSFORM to disable

● Evaluates constant merl calls and parses
quoted strings to templates at compile time

T = merl:term([1,2,3])

?Q("f() -> _@x.", [{x, X])

● Avoids runtime overhead of parsing and
tree-to-template conversion

● Uses itself to compile itself

Inline metavariables

● Metavariables looking like normal Erlang
variables are lifted to the Erlang level by
the parse transform

Foo = ?Q("{foo, [1,2,3]}"),

Bar = ?Q("{bar, _@Foo}")

● No need for a list of tagged tuples
– Faster substitution

● But the code needs the transform to work

Auto-abstracting inline variables

● Very common pattern:

TmpFoo = merl:term(Foo),

Bar = ?Q("{bar, _@TmpFoo}")

● Naming convention for automatically
abstracting a constant term to a syntax tree

Bar = ?Q("{bar, _@Foo@}")

● No need for intermediate variable names
● Eliminated most calls to merl:term/1

Case switches

merl:switch(Tree,
 [{?Q("{bar, _@x}"),
 fun ([{x, X}]) -> X end},
 {?Q("{foo, _@x}"),
 fun ([{x, X}]) -> X end},
 fun () -> ?Q("undefined") end
]))
● Clause={Pattern,Body}|{Pattern,Guard,Body}
● Future: make parse transform expand inline

Module building API

● init_module/1
● add_function/4
● add_record/3
● add_import/3
● add_attribute/3
● set_file/2
● module_forms/1

Future directions

● Will be on GitHub soon

https://github.com/richcarl

● Submit for inclusion in OTP
– Part of Syntax Tools or separate app?

● Decomposition still a little messy
– Inline metavariables in matches/switches?

Examples

	Sida 1
	Sida 2
	Sida 3
	Sida 4
	Sida 5
	Sida 6
	Sida 7
	Sida 8
	Sida 9
	Sida 10
	Sida 11
	Sida 12
	Sida 13
	Sida 14
	Sida 15
	Sida 16
	Sida 17
	Sida 18
	Sida 19
	Sida 20
	Sida 21
	Sida 22
	Sida 23
	Sida 24
	Sida 25
	Sida 26
	Sida 27
	Sida 28
	Sida 29
	Sida 30
	Sida 31
	Sida 32
	Sida 33
	Sida 34
	Sida 35
	Sida 36
	Sida 37
	Sida 38
	Sida 39
	Sida 40
	Sida 41
	Sida 42
	Sida 43
	Sida 44
	Sida 45
	Sida 46
	Sida 47

