ErlyWeb

A web development framework for Erlang

Yariv Sadan
4/31/2009

Records
Defining

-record(artist, {name, album}).
-record(aloum, {name, song}).
-record(song, {name, length}).

Creating

Song = #song{name = “One”, length=2.13}.

Getting

Name = Song#song.name.

Setting

Song1 = Song#song{name = “Zoo Station”}

More Records

Getting

Song = ((Artist#artist.aloum)
#album.song)#song.name

Setting

Artist2 =
Artist#artist{album=
(Artist#artist.aloum)#song{name=
((Artist#artist.album)
#album.song)#song{name= "Zoo Station"}}}.

Recless

Creating

Artist =
#artist{name = "U2",
aloum = #album{name = "Achtung Baby",
song = #song{name = "One" }}}

Getting

Artist2 = Artist.aloum.song.name = "Zoo Station

Setting

Song = Artist.album.song.name

Using Recless

Add this declaration

-compile({parse_transform, recless}).

This doesn’t work

get_name(Person) -> Person.name.

Instead, you must write this

get_name(Person = #person{}) ->
Person.name.

ErlyWeb Benefits

Erlang/OTP

Functional programming

Concurrent programming

MVC

Component-oriented

Database abstraction (ErlyDB)
Protection from SQL injection attacks
Hot code swapping

Best platform for Comet applications
Lots of fun!

ErlyDB: Database Abstraction

 DDL:

CREATE TABLE painting (
id integer auto_increment primary key,
title varchar(255))

e painting.erl:

-module(painting).
-compile(export_all).

DB Access Code Example

Title = “landscape”,
P = painting:new(Title), %% create a new record
painting:transaction(

fun() ->

P1 = painting:save(P), %% INSERT

P2 = painting:title(P1, “beach”), %% change the title
painting:save(P2), %% UPDATE

%% SELECT

Paintings = painting:find({'or', [{id, '=', 1}, {title,like,”"monster%”}]}),
painting:delete(P) %% DELETE

end)

More ErlyDB Features

o Relations (many-to-one, one-to-man, many-
to-many)

— artist:add_painting(Artist, Painting).

— artist:paintings(Artist, {title,'=","beach”}).
o« Drivers for MySQL, Postgres and Mnesia
o Supports multiple DB's

« DB connection pooling

— Uses Erlang concurrency
« Dispatcher process + one process per connection

— Transactions “Just Work”

DB Connection Pooling (MySQL)

Client

7

1

‘ ‘ Erlang VM

Pool2

, | @
; Q ispatcher Q
O /) |
6 ?% Pool1
Q/
\‘A |

5]

Uses for Concurrency in Web Apps

« Connection pooling

« Parallelizing DB queries, component
renderings, web service calls, etc.

e Performing background tasks

— Updating counters, processing data/assets,
communicating with backend services, etc.

o Storing shared (session) data in memory for
fast access

e COmet

Components

« Component = Controller + View
« Components can be embedded in other
components

— Controllers decide what to embed, views decide
where

« Phased rendering
— First, render requested component

— Pass the result (if any) to the enclosing
component

Controller Example

-module(artist_controller).
-export([show/2]).

show(A, Id) ->
%% look up the artist and related paintings
Artist = artist:find_id(ld),
Paintings = artist:paintings_with(Artist, [{order_by, {created_on, desc}}, {limit, 10}]),
%% pass the artist name and a list of of rendered 'painting' subcomponents
%% to the view function
[{data, artist:name(Artist)},
[{ewc, painting, [A, Painting]} | | Painting <- Paintings]].

Views

o Views are Erlang modules (benefits: speed,
reusability)

e Each controller has a view

« View function names map to controller
function names

« View functions return iolists (nested lists of
strings and/or binaries)

o [“What”, [Sa, <<"great”>>, [<<”painting”>>]]]

o Can be implemented in Erlang or ErITL

ErlTL Example

<% @ index({ok, {Username, Painting}}) %>
Hi <% Username %>!

Here's today's top painting: <% Painting %>
<% @ index({error, Msgs}) %>
Oops, the following errors occured:

<% [err(Msg) | | Msg <- Msgs] %>

<% @ err(Msg) %><div class="error”><% Msg %></div>

Phased Rendering Example

hook(A) ->
{phased,
{ewc, A}, %% first, render the requested component
fun({ewc, Controller, View, Func, Params}, Data, PhasedVars) ->
case Controller of
ajax_controller ->
%% if the client requested the 'ajax' component, return rendered result unchanged
{data, Data};
>
%% otherwise, embed the result in html_container before returning
{ewc, html_container, [A, {data, Data}]}
end

end}

ErlyWeb is Comet-Ready

Message passing primitives

Lightweight processes (location transparent)
Preemptive scheduling

Per-process heaps

Immutable data

Port-based interface to native code

Mnesia (distributed store for shared data)
Hot code swapping.

Thank you

