
ErlyWeb
A web development framework for Erlang

Yariv Sadan
4/31/2009

ErlyWeb
A web development framework for Erlang

Yariv Sadan
4/31/2009

Records
Defining

-record(artist, {name, album}).
-record(album, {name, song}).
-record(song, {name, length}).

Creating

Song = #song{name = “One”, length=2.13}.

Getting

Name = Song#song.name.

Setting

Song1 = Song#song{name = “Zoo Station”}

Records

Song = #song{name = “One”, length=2.13}.

Song1 = Song#song{name = “Zoo Station”}

More Records

Getting

Song = ((Artist#artist.album)
#album.song)#song.name

SettingSetting

Artist2 =
Artist#artist{album=
(Artist#artist.album)#song{name=

((Artist#artist.album)
#album.song)#song{name= ”Zoo Station"}}}.

More Records

#album.song)#song{name= ”Zoo Station"}}}.

Creating

Artist =
#artist{name = ”U2",

album = #album{name = ”Achtung Baby",
song = #song{name = ”One" }}}

Recless

Getting

Artist2 = Artist.album.song.name = ”Zoo Station"

Setting

Song = Artist.album.song.name

album = #album{name = ”Achtung Baby",
song = #song{name = ”One" }}}

Recless

Artist2 = Artist.album.song.name = ”Zoo Station"

Add this declaration

-compile({parse_transform, recless}).

This doesn’t work

Using Recless

This doesn’t work

get_name(Person) -> Person.name.

Instead, you must write this

get_name(Person = #person{}) ->
Person.name.

Using Recless

Instead, you must write this

ErlyWeb Benefits

� Erlang/OTP

� Functional programming

� Concurrent programming

� MVC

� Component-oriented

� Database abstraction (ErlyDB)� Database abstraction (ErlyDB)

� Protection from SQL injection attacks

� Hot code swapping

� Best platform for Comet applications

� Lots of fun!

ErlyWeb Benefits

ErlyDB: Database Abstraction

• DDL:

• CREATE TABLE painting (

• id integer auto_increment primary key,

• title varchar(255))

• painting.erl:

• -module(painting).

• -compile(export_all).

ErlyDB: Database Abstraction

DB Access Code Example

• Title = “landscape”,

• P = painting:new(Title), %% create a new record

• painting:transaction(

• fun() ->

• P1 = painting:save(P), %% INSERT

• P2 = painting:title(P1, “beach”), %% change the title

• painting:save(P2), %% UPDATE

• %% SELECT

• Paintings = painting:find({'or', [{id, '=', 1}, {title,like,”monster%”}]}),

• painting:delete(P) %% DELETE

• end)

DB Access Code Example

%% create a new record

%% change the title

Paintings = painting:find({'or', [{id, '=', 1}, {title,like,”monster%”}]}),

More ErlyDB Features

� Relations (many-to-one, one
to-many)

− artist:add_painting(Artist, Painting).

− artist:paintings(Artist, {title,'=',”beach”}).− artist:paintings(Artist, {title,'=',”beach”}).

� Drivers for MySQL, Postgres and Mnesia

� Supports multiple DB's

� DB connection pooling

− Uses Erlang concurrency
� Dispatcher process + one process per connection

− Transactions “Just Work”

More ErlyDB Features

one, one-to-man, many-

artist:add_painting(Artist, Painting).

artist:paintings(Artist, {title,'=',”beach”}).artist:paintings(Artist, {title,'=',”beach”}).

Drivers for MySQL, Postgres and Mnesia

Supports multiple DB's

DB connection pooling

Uses Erlang concurrency
Dispatcher process + one process per connection

Transactions “Just Work”

DB Connection Pooling (MySQL)

ErlyWeb

Dispatcher

Client

1

2
7

DB2

3

4

5

6
Pool2

DB Connection Pooling (MySQL)

Dispatcher

Erlang VM

DB1

DB2

Pool1

Uses for Concurrency in Web Apps

� Connection pooling

� Parallelizing DB queries, component

renderings, web service calls, etc.

Performing background tasks� Performing background tasks

− Updating counters, processing data/assets,

communicating with backend services, etc.

� Storing shared (session) data in memory for

fast access

� Comet

Uses for Concurrency in Web Apps

Parallelizing DB queries, component

renderings, web service calls, etc.

Performing background tasksPerforming background tasks

Updating counters, processing data/assets,

communicating with backend services, etc.

Storing shared (session) data in memory for

Components

� Component = Controller + View

� Components can be embedded in other
components

− Controllers decide what to embed, views decide − Controllers decide what to embed, views decide
where

� Phased rendering

− First, render requested component

− Pass the result (if any) to the enclosing
component

Components

Component = Controller + View

Components can be embedded in other

Controllers decide what to embed, views decide Controllers decide what to embed, views decide

First, render requested component

Pass the result (if any) to the enclosing

Controller Example

• -module(artist_controller).

• -export([show/2]).

• show(A, Id) ->

• %% look up the artist and related paintings

• Artist = artist:find_id(Id),

• Paintings = artist:paintings_with(Artist, [{order_by, {created_on, desc}}, {limit, 10}]),• Paintings = artist:paintings_with(Artist, [{order_by, {created_on, desc}}, {limit, 10}]),

• %% pass the artist name and a list of of rendered 'painting' subcomponents

• %% to the view function

• [{data, artist:name(Artist)},

• [{ewc, painting, [A, Painting]} || Painting <

Controller Example

%% look up the artist and related paintings

Paintings = artist:paintings_with(Artist, [{order_by, {created_on, desc}}, {limit, 10}]),Paintings = artist:paintings_with(Artist, [{order_by, {created_on, desc}}, {limit, 10}]),

%% pass the artist name and a list of of rendered 'painting' subcomponents

[{ewc, painting, [A, Painting]} || Painting <- Paintings]].

Views

� Views are Erlang modules (benefits: speed,

reusability)

� Each controller has a view

View function names map to controller � View function names map to controller

function names

� View functions return iolists (nested lists of

strings and/or binaries)
� [“what”, [$a, <<”great”>>, [<<”painting”>>]]]

� Can be implemented in Erlang or ErlTL

Views

Views are Erlang modules (benefits: speed,

Each controller has a view

View function names map to controller View function names map to controller

View functions return iolists (nested lists of

strings and/or binaries)
[“what”, [$a, <<”great”>>, [<<”painting”>>]]]

Can be implemented in Erlang or ErlTL

ErlTL Example

• <%@ index({ok, {Username, Painting}}) %>

• Hi <% Username %>!

• Here's today's top painting: <% Painting %>

• <%@ index({error, Msgs}) %>

• Oops, the following errors occured:

• <% [err(Msg) || Msg <- Msgs] %>• <% [err(Msg) || Msg <- Msgs] %>

• <%@ err(Msg) %><div class=”error”><% Msg %></div>

ErlTL Example

<%@ err(Msg) %><div class=”error”><% Msg %></div>

Phased Rendering Example

• hook(A) ->

• {phased,

• {ewc, A}, %% first, render the requested component

• fun({ewc, Controller, _View, _Func, _Params}, Data, _PhasedVars)

• case Controller of

• ajax_controller ->

• %% if the client requested the 'ajax' component, return rendered result unchanged• %% if the client requested the 'ajax' component, return rendered result unchanged

• {data, Data};

• _ ->

• %% otherwise, embed the result in html_container before returning

• {ewc, html_container, [A, {data, Data}]}

• end

• end}

•

Phased Rendering Example

%% first, render the requested component

fun({ewc, Controller, _View, _Func, _Params}, Data, _PhasedVars) ->

%% if the client requested the 'ajax' component, return rendered result unchanged%% if the client requested the 'ajax' component, return rendered result unchanged

%% otherwise, embed the result in html_container before returning

{ewc, html_container, [A, {data, Data}]}

ErlyWeb is Comet

− Message passing primitives

− Lightweight processes (location transparent)

− Preemptive scheduling

− Per-process heaps

Immutable data− Immutable data

− Port-based interface to native code

− Mnesia (distributed store for shared data)

− Hot code swapping.

ErlyWeb is Comet-Ready

Message passing primitives

Lightweight processes (location transparent)

based interface to native code

Mnesia (distributed store for shared data)

Thank youThank you

