
An Operating System
for the Real World

Why its pilot development
needs OTP/Erlang

Paul Valckenaers

KU Leuven association
valckenaersp@acm.org

Personal History

•  Late 1980’s BYTE Magazine
– Erlang : keeps the good & discards the bad
– Loved it, but “you can’t have it all”

•  3Q2010
– CACM paper on Erlang
– Demonstration of coordination of combine

harvester and tractor fleet operations
–  Incentive to have a closer look

Demonstration 4Q2010

Activity Coordination

Research – Smart Systems

•  Manufacturing Execution Systems (MES)
•  Logistic Execution Systems (LES)
•  Robotic fleets (hospitals, harvesting, road

construction, open air mining …)
•  Intelligent Traffic Systems (ITS) – FP7/MODUM
•  Smart Grids (e.g. refrigerate when wind mills…)
•  Electro-mobility (combines previous three)

Activities involving Valuable Resources

Computer OS

•  Manages resources
•  CPU cores
•  Memory
• …

•  Used by activities
•  Processes
•  Threads
• …

•  Making minimal assumptions about …

Operating Systems

•  Explicit and mandatory/enforceable
resource allocation

The operating system is in charge of allocating resources
such as time slices on processor cores, access and locks
on data files, rights to use peripheral devices …
All activities need to acquire and release the resources
that they need.

Operating Systems

•  Interaction facilities

The operating system provides valuable services that the
activities (processes) use to efficiently and effectively
interact.
In particular, these services enable to communicate with
the proper counterparts.
Importantly, these services allow activities to use the
available resources efficiently (e.g. signal & wait avoids
the need for polling).

Operating Systems

•  Application agnostic

The operating system will have a scope – e.g. embedded
or desktop applications – and will make some restrictive
assumptions – e.g. concerning real time applications.
But, these constraints have a technological origin and
are not reflecting specific expectations concerning the
applications:

The modern operating system is
designed for the unexpected

Differences
•  Resources are orders of magnitude more expensive and valuable.
•  The socio-economic impact of the activities is orders of magnitude

more significant.
Note: difference must not become so big that it becomes economical to have highly
paid humans experts manage the activities and resources.

•  Resources and activities are more diverse and more complex.
They have state and state trajectories. Allocation and de-allocation cannot assume
some (limited number of) reference states. A truck that is de-allocated in Barcelona
cannot be allocated in Antwerp without executing an activity that transfers the truck
to Antwerp first, which requires allocation of resources (truck, driver, fuel).

•  Imperfect enforceability of the resource allocations.
A truck may break down or get involved in a car crash.
A truck may discover that the load is overweight during pick-up.

OS-4-RW Implications

•  Larger computational budget
OS4RW can perform complex computations and communications/
interactions to take optimized decisions and actions because the
economic gains will cover the effort and investments.

•  More challenging tasks
Necessary for the OS4RW to be smarter than a computer OS
because it is managing more complex and less predictable/
controllable resources and activities.
Needs to be a model-driven design where models mirror real-world
counterparts (e.g. trucks, overnight charging of car batteries …).

OS-4-RW Achievements
•  Software engineering and formal methods

by ..., Michael Jackson, ... in ACM vol. 51, no. 9

“Software-intensive systems are intended to interact dependably
with the human and physical problem world … non-formal problem
world has many parts—human, natural, and engineered—whose
properties and behavior are far less reliable … How can a
dependable system be designed?”
“ … long-term community of engineers specializing in systems of
the particular product class. For a critical software-intensive system,
specialization is not optional.”

•  Move the starting point where this specialization is
required closer to the final product… relax this req.

OS-4-RW Achievements

•  Move the starting point where specialization is
required closer to the final product

•  The knowhow of experienced specialists’
is crystalized in the OS-4-RW

•  Allow less experienced developers master the
simpler tasks, projects… independently

•  The OS-4-RW handles the tricky parts

•  Enable experienced developers to enter later in
the project and wrap things up, undo, redo…

•  OS-4-RW resource allocation is key enabler

OS-4-RW Achievements

•  Multi-party solutions
•  OS-4-RW resource allocation is key

•  Allow co-existence of …
•  OS-4-RW resource allocation is key

•  Enable evolutionary development…
•  OS-4-RW resource allocation is key enabler

Design for the unexpected

What about Erlang?

•  Key enabling technology to make this
feasible until OS-4-RW is recognized and
broadly accepted (as ERP, Computer OS)

•  Addresses key concerns for pilot development
and deployment

•  Past developments: Java, dot-net, …
•  Academic demo = too far from industrial pilot
•  Industrial demo >> requires R&D funding
•  Time window is too small for …

What about Erlang?

•  Current developments
•  Tech transfer starts from existing software and

involves end-user preferences (e.g. dot-net).

•  Recent research activities are using OTP/Erlang
•  MODUM – FP7 Project on ITS (4Q2011-3Q2014)
•  IFAC Technical Committee 5.1

– Manufacturing Plant Control (on MES)
–  http://tc.ifac-control.org/5/1
–  h t t p : / / w w w . l i n k e d i n . c o m / g r o u p s / I F A C - T C 5 1 -

Manufacturing-Plant-Control-4235564

OS-4-RW Architecture

Mirror reality a b c

a b c

a b c

Orders Product types Resources

OS-4-RW “mirror” supports virtual
navigation and execution – explore

time t2

EA2

t1

EA1

t3

EA3

t4

IA

Software objects (processes) reflect reality and its structure

E.g. swarm agents virtually
execute a possible routing

Order agents
create swarm
agents, at
regular time
intervals, that
virtually
execute the
remainder of
their routing
and report
back how it
performs.

Intention swarm agent virtually
execute the order intention in mirror

Ra

Rb

Rc

Rd

1st candidate

Ra

Rb

Rc

Rd

3rd candidate

Ra

Rb

Rc

Rd

2nd candidate

Orders - Agent

Current intention
Reservations for this route

are made by intention swarm agent
and regularly reconfirmed.

Done through a virtual execution
revealing the impact of any
changes or disturbances.

Intention propagation generates the
forecast acounting for interaction

a bc

Time

Intention	
 stre ng th

Resource agents are informed of
expected visits by production orders
and the processing steps that
then will need to be performed.

This information is used in
the self-model of the resource
agent to support an
accurate virtual execution
on behalf of the
visiting swarm agents.

A refresh-or-forget mechanism
ensures regular updates and
removes out-of-date information.

Intention swarms from orders that 
will visit this resource in future
make (and regularly reconfirm) the
corresponding reservations on
the resource agent’s agenda.

OS-4-RW – Harvesting
Decentralized ant colony optimization meta-schema

Introduction Problem and objectives Approach and results Conclusions

21

OS-4-RW – Harvesting
Decentralized ant colony optimization meta-schema

Introduction Problem and objectives Approach and results Conclusions

22

OS-4-RW – Harvesting
Decentralized ant colony optimization meta-schema

Introduction Problem and objectives Approach and results Conclusions

23

OS-4-RW – Harvesting
Decentralized ant colony optimization meta-schema

Introduction Problem and objectives Approach and results Conclusions

24

OS-4-RW – Harvesting
Decentralized ant colony optimization meta-schema

Introduction Problem and objectives Approach and results Conclusions

25

OS-4-RW – Harvesting
Decentralized ant colony optimization meta-schema

Introduction Problem and objectives Approach and results Conclusions

26

OS-4-RW – Harvesting
Decentralized ant colony optimization meta-schema

Introduction Problem and objectives Approach and results Conclusions

27

OS-4-RW – Harvesting
Decentralized ant colony optimization meta-schema

Introduction Problem and objectives Approach and results Conclusions

28

Emerging Online Planning

•  Online planning method
– Detailed schedules for the coordinating

vehicles
– Operating instructions: speed, routes,

rendezvous…

Fig. Local schedules of the harvesting vehicles

Introduction Problem and objectives Approach and results Conclusions

29

Emerging Online Planning

•  Plan maintenance according to runtime
conditions
– Updating the ongoing operations
– Consistently adapting the schedule of the

remaining operations

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

P
la

nn
ed

 ti
m

e
(S

ec
.)

Real time (Sec.)

Operation 1

Operation 2

Operation 3

Fig. Local schedules of the combine harvester

Introduction Problem and objectives Approach and results Conclusions

30

Real world deployment

•  Connecting the system to the real world
resources
– Distributed setup of the system
– Middleware for information exchange
– Communication via GPRS/WiFi

Combine harvester (client computer) Tractor (client computer)

Online planning system (server)

Fig. Distributed setup of the online planning system

Introduction Problem and objectives Approach and results Conclusions

31

Real world deployment

•  Planning and control of the real world
harvesting vehicles
– Operating guidance for individual vehicles:

Vehicle UI
– Runtime monitoring data: Vehicle sensors

Fig. UI of the combine harvester

Introduction Problem and objectives Approach and results Conclusions

32

Example: resource = shipping lane
•  Complicated: Intelligent lighthouse (L)

–  Maps of the sea bottom, currents and tides
–  Status information and forecasts
–  D-GPS reference signal
–  RESOURCE ALLOCATION = EXPLICIT

Example: resource = cargo ship

•  Complicated (B):
–  Ship’s technical data: power, size and shape, …
–  Status information: cargo, fuel, …

Example: virtual execution
•  Proactive coordination and control

–  Have (A) steer the ship in predicted situations;
(A) operates in simulation

–  Map ship trajectory relying on (B), (L) and (A)
Result is to simulate and predict

Example: forecast with interactions
•  Proactive coordination and control

–  Map ship trajectory relying on (A), (B) and (L)
–  Make every mapped trajectory visible on (L)
Result is to simulate and predict – individualized – Interactions

Example: explore with interactions
•  PROSA and Delegate MAS

–  Digital world & virtual execution
–  Exploring ant agents, intention ant agents for every order
–  Emergent self-organising forecasting and coordination

CONCLUSION

•  OS-4-RW
•  Targeting ITS, MES, LES, … (not info-centric)
•  Valuable (e.g. get a personalized green wave)
•  Computationally efficient executable models

•  OTP/Erlang is key enabler

•  Recent activities are using OTP/Erlang

