Erlang and Node.|S
or, better,

Criteria for evaluating
technology

Lev Walkin, CTO Echo
@levwalkin

™echo



Task

® |ibrary coverage
® Community size and quality

® T[raditional tasks solved by community



Domain

® | anguages have objective differences
® Math — R, Matlab
® Strings — Perl
® Syntax trees — ML, LISP

® Client-side programming:VBScript



Language

® Power of abstraction
® Support for useful practices

® Discouragement of negative practices
(global variables)



Barriers to entry

Simplicity as in “number of moving parts”

Simplicity as in “simple made easy, hard
things possible”

Simplicity as in “number of abstractions to
the bottom”™

Simplicity as in “reusable prior knowledge”



Code evolution

Support for growing codebase
Coverage, testing, refactoring
Testability (= light coupling)
QuickCheck / PropEr



Running the service

Introspection
Code deployment
Hot upgrade

Running in presense of failures



Riring arguments

® Ability to find skilled people...

® Yet, diversity is an overlooked argument



Programming in groups

® Unclear dependencies

® Non-formalized conventions

® Code does not fit a single brain
® Understanding peer’s code

® |nvoluntary data corruption

® Code review



Ecosystem maturity

® Mature system to support ever-changing
requirements!?



Enjoyment ()

® Streamlined learning process (physiology)
® Speeds up habit formation

® Huge support for intrinsic motivation



Enjoyment (2)

® Objective advantage can turn into objective
deficiency... enjoyment helps to pull
through.



Enjoyment (3)

® Can be instilled and modulated!
® Enjoyment is contagious!

® Helps form communities



Erlang

Erlang was not designed the web

yet, web server side is a system for serving
ton of people (same approximate domain)

Supports good practices

Runs in presense of programmer and
environment errors

Great introspection and debugging



JavaScript ()

® JavaScript !designed for the modern web

® Somewhat indifferent to good practices
(global vars, namespaces, memory isolation)

® | ots of folklore used to keep code neat

® Great frameworks for its primary tasks and
domain



JavaScript (2)

The most important component of the
modern VWeb ecosystem

LOTS of useful complexity on the client
Lots of people know it (really?)

Hard to find and train JavaScript
programmers... but easier to find than
Erlang ones (See Hiring argument)



Node

® FastVM: beats Erlang at many benchmarks

® Not very stable yet, but keeps getting
better

® JavaScript lures client-side folks by
promising code reuse

® Async-lO technique requires next slide



|O story

Linear flow (open(); do(); close();)
State machines (switch(STEP2) { ... })

Coroutines = Packaging FSM

Green threads — back to Linear

Linear is GOOD!



Node.]S

® Linear flow is a desired property!

® New languages and pre-processors provide
resemblance of linear flow, therefore no
code reuse

® Frameworks mask necessity to do 10O, yet
still...



Node.]S

® No significant code reuse.

® People do not move to Node.JS from client
side (shortage of such people, anyway).

® People move to Node.)S because they
think there are many client side people
who will support the ecosystem.



Node.]S

Node.JS is a platform in its own right!

Ruby and Python and Java programmers
chose Node.JS

Node.|S introduces frameworks for the
next web (real time, Socket.lO, Now|S)

People are EXCITED about it.



Erlang and Node.|S

® Clear new-ish niche for Erlang: the real
time, always on web.

® Node.JS has increasing footprint in this
space

® Technical merits may not count
when people enjoy stuff



Enjoyment with Node

® Programmers moving from LAMP to Node
enjoy low barriers to entry

® Programmers moving from LAMP enjoy
web (and real-time web)

® Excited people develop the ecosystem and
overcome technical hurdles



Enjoyment with Erlang

® Erlang folks enjoy language, not so much a
domain (web)

® Erlang folks see Node.|S as a competitor

® Erlang community is at risk of losing the
good domain



Answers!

@levwalkin

lionet @ L]



