Yandex

Scalable ejabberd

Konstantin Tcepliaev

Moscow Erlang Factory Lite
June 2012



ejabberd

XMPP (previously known as Jabber) IM server
Erlang/OTP

Mnesia for temporary data (sessions, routes,
etc.)

Mnesia or ODBC for persistent data
Modular



Too naive

* \Works excellent on one or two always-on
machines with several thousands connections

* When it comes to a pretty large installation
(tens of considered faulty machines, hundreds
thousand connections), problems start to
emerge



ejabberd at Yandex

« XMPP IM server
« Backend for web chat service

* Transport for iPhone/Android mobile mail
application

« PUSH notifications for Yandex.Disk



Scalability issues

* Direct message passing to PIDs without any
guarantees

 Memory consumption: large #state{} of client
processes, separate TCP receivers

* Mnesia-based storage



Message passing problem

* |[f remote node goes down, all messages sent
there are lost

* In Erlang, PIDs aren't being invalidated — if
process has exited already, your message is
lost too

 No method to know whether message was
received or not



Trial by error

* First thought:
gen_fsm:sync _send_all state event/3

* |nvolves receiving reply, which is another
message

e Synchronous, need to wait for timeout when
calling dead process

e Decision: unacceptable



Trial by error

» Second try: node/1 to distinguish local and
remote PIDs

* Local: Use is_process_alive/1, send directly if
true, failover If false

« Remote: send message to {ejabberd sm,
node(PID)} and mess with it there.

 Downside: ejabberd sm becomes a bottleneck.



Solution

Final version: separate the messages

<message/> stanzas are critical, should be sent
as described before

<iq/> and <presence/> aren't that important and
may be sent as usual

Further improvements for SM:
process_flag(priority, high) or replacing with a
process pool.



Memory consumption

» Client (C2S) process state consists of ~30
fields, of which ~10 are used only during stream
negotiation

» Subscription lists are always stored in state.

* Recelver is another process, separate from
C2S — two processes per client.



Large state

o Split C2S process callback module in two, with
their own states

* gen_fsm for stream negotiation
e gen_server later

e gen_server.enter loop(ejabberd c2s, [], State,
hibernate)

* Free bonus: 'hibernate’ option triggers garbage
collection

Y



Subscription lists

« Subscription lists store information about

contacts with which client should exchange
presence information

e No need for them when user doesn't send
presences

e Solution: retreive only when presence is sent.



Separate receiver process

e C2S and receiver share the same TCP socket
e C2S sends data to socket

* Receiver controls the socket, waits for {tcp, ...},
decodes XML and passes it to C2S.

e Solution: eliminate receiver process and let
C2S control the socket and do all the job.



Memory: results

* Average memory consumption for one client
connection have dropped ~40% to ~500kB

 Database load dropped slightly



Mnesia

* Transactional — doesn't scale after some |imit
e Brain-splits are fatal

 Node deaths are fatal

* Any inconsistency is fatal



MongoDB

* Eventual consistency

* Replica sets for failover

» Sharding for load balancing

» Self-healing after brain-splits

» Theoretically unlimited scalability



Late 2010

Mongo 1.2, no replica sets, unstable sharding

Manual sharding in SM, using phash2 on
usernames

Replica pairs with master-to-master scheme

Writes and reads both go to one replica, other
IS used as failover

ETS caching of local sessions on each node



Early 2012

Mongo 2.0.1
Requests per second limit reached
Master-to-master has become obsolete

Replication deadlocking, hard to investigate and
impossible to predict



Trying replica sets

« All database requests seem to need to retreive
consistent data, so all operations are done on
master nodes

« Secondaries are kept for failover
 Mnesia removed completely

 Problem: RPS on master is still the same,
requests time out on load peaks.



MongoDB: final solution

» Session data doesn't actually always needs to
be consistent

* Retreiving contacts' sessions from master to
send them initial presence

* All other reads are done on secondaries, using
slaveOk() option.



What it looks like now

 Reading from secondaries: ~60% requests
* Writing to primaries, with sharding

e Cluster easily survives brain-splits, network
outages, node downtimes and massive user
reconnects

* Huge potential for horizontal scaling



Questions?

f395@yandex-team.ru



