
Scalable ejabberd
Konstantin Tcepliaev

Moscow Erlang Factory Lite
June 2012



ejabberd
● XMPP (previously known as Jabber) IM server
● Erlang/OTP
● Mnesia for temporary data (sessions, routes, 

etc.)
● Mnesia or ODBC for persistent data
● Modular



Too naїve
● Works excellent on one or two always-on 

machines with several thousands connections
● When it comes to a pretty large installation 

(tens of considered faulty machines, hundreds 
thousand connections), problems start to 
emerge



ejabberd at Yandex 
● XMPP IM server
● Backend for web chat service
● Transport for iPhone/Android mobile mail 

application
● PUSH notifications for Yandex.Disk



Scalability issues
● Direct message passing to PIDs without any 

guarantees
● Memory consumption: large #state{} of client 

processes, separate TCP receivers
● Mnesia-based storage



Message passing problem
● If remote node goes down, all messages sent 

there are lost
● In Erlang, PIDs aren't being invalidated — if 

process has exited already, your message is 
lost too

● No method to know whether message was 
received or not



Trial by error
● First thought: 

gen_fsm:sync_send_all_state_event/3
● Involves receiving reply, which is another 

message
● Synchronous, need to wait for timeout when 

calling dead process
● Decision: unacceptable



Trial by error
● Second try: node/1 to distinguish local and 

remote PIDs
● Local: Use is_process_alive/1, send directly if 

true, failover if false
● Remote: send message to {ejabberd_sm, 

node(PID)} and mess with it there.
● Downside: ejabberd_sm becomes a bottleneck.



Solution
● Final version: separate the messages
● <message/> stanzas are critical, should be sent 

as described before
● <iq/> and <presence/> aren't that important and 

may be sent as usual
● Further improvements for SM: 

process_flag(priority, high) or replacing with a 
process pool.



Memory consumption
● Client (C2S) process state consists of ~30 

fields, of which ~10 are used only during stream 
negotiation

● Subscription lists are always stored in state.
● Receiver is another process, separate from 

C2S — two processes per client.



Large state
● Split C2S process callback module in two, with 

their own states
● gen_fsm for stream negotiation
● gen_server later
● gen_server:enter_loop(ejabberd_c2s, [], State, 

hibernate)
● Free bonus: 'hibernate' option triggers garbage 

collection



Subscription lists
● Subscription lists store information about 

contacts with which client should exchange 
presence information

● No need for them when user doesn't send 
presences

● Solution: retreive only when presence is sent.



Separate receiver process
● C2S and receiver share the same TCP socket
● C2S sends data to socket
● Receiver controls the socket, waits for {tcp, ...}, 

decodes XML and passes it to C2S.
● Solution: eliminate receiver process and let 

C2S control the socket and do all the job.



Memory: results
● Average memory consumption for one client 

connection have dropped ~40% to ~500kB
● Database load dropped slightly



Mnesia
● Transactional — doesn't scale after some limit
● Brain-splits are fatal
● Node deaths are fatal
● Any inconsistency is fatal



MongoDB
● Eventual consistency
● Replica sets for failover
● Sharding for load balancing
● Self-healing after brain-splits
● Theoretically unlimited scalability



Late 2010
● Mongo 1.2, no replica sets, unstable sharding
● Manual sharding in SM, using phash2 on 

usernames
● Replica pairs with master-to-master scheme
● Writes and reads both go to one replica, other 

is used as failover
● ETS caching of local sessions on each node



Early 2012
● Mongo 2.0.1
● Requests per second limit reached
● Master-to-master has become obsolete
● Replication deadlocking, hard to investigate and 

impossible to predict



Trying replica sets
● All database requests seem to need to retreive 

consistent data, so all operations are done on 
master nodes

● Secondaries are kept for failover
● Mnesia removed completely
● Problem: RPS on master is still the same, 

requests time out on load peaks.



MongoDB: final solution
● Session data doesn't actually always needs to 

be consistent
● Retreiving contacts' sessions from master to 

send them initial presence
● All other reads are done on secondaries, using 

slaveOk() option.



What it looks like now
● Reading from secondaries: ~60% requests
● Writing to primaries, with sharding
● Cluster easily survives brain-splits, network 

outages, node downtimes and massive user 
reconnects

● Huge potential for horizontal scaling



Questions?

f355@yandex-team.ru


