
MANAGING PROCESSES
WITHOUT OTP

(and how to make them OTP-compliant)

Jay Nelson
@duomark

1Friday, August 3, 2012

ERLANG PROCESSES

• Code only executes in a process

• Each process has its own memory space

• Serial execution logic

• Separate garbage collector for each

2Friday, August 3, 2012

CREATING A PROCESS

• Spawn for independent process

• Spawn_link for linked process

• Abnormal exit takes down all linked processes

• Spawn_monitor for monitored process

• Parent receives a message when it goes down

3Friday, August 3, 2012

NEW PROCESS CREATES

• Encapsulated empty memory space

• Local process dictionary of Key/Value pairs

• Execution begins with passed in function

• Returns a Pid reference to the process

• Format is <N.PPP.I> (node, process, int)

4Friday, August 3, 2012

EXAMPLE SPAWNED PROCESSES

-module(procs).
-export([get_dict/0]).

get_dict() ->
 Dict = process_info(self(), dictionary)
 error_logger:info_msg("dict: ~p~n", [Dict]).

Eshell
1> spawn(procs, get_dict, []).

 =INFO REPORT===
 dict: {dictionary, []}

<0.150.0>

5Friday, August 3, 2012

EXAMPLE SPAWNED PROCESSES

2> F1 = fun() ->
 error_logger:info_msg("dict: ~p~n",
 [process_info(self(), dictionary)])
end.

Eshell
3> spawn(F1).

 =INFO REPORT===
 dict: {dictionary, []}

<0.151.0>

6Friday, August 3, 2012

 COMMUNICATION BETWEEN PROCESSES

• Sending

• Pid ! Msg

• erlang:send(Pid, Msg)

• erlang:send(Pid, Msg, Options)

•Message mailbox

•maintains list of messages in order arrived

• guaranteed in order sent if no middle process

7Friday, August 3, 2012

IN-ORDER RECEIVE

•Dequeues all messages

• Synchronously handles each one as it is dequeued

receive
 Any_Msg -> handle(Any_Msg)
end.

8Friday, August 3, 2012

OUT-OF-ORDER (SELECTIVE) RECEIVE

•Only messages tagged my_msg are handled

•Other messages left in mailbox in original order

receive
 {my_msg, Data} -> handle_my_way
after 100 -> continue
end.

9Friday, August 3, 2012

GEN_SERVER/GEN_FSM ET AL

• start_link to spawn a new process

• Pushes messages (no receive in user code)

• Supports sync, async erlang messages

• Supports TCP raw data as info messages

• Allows for controlled code change

• Cleanup of state on shutdown

10Friday, August 3, 2012

SUPERVISORS

• Link gen servers into a hierarchy

• Allows controlled startup

• Can shutdown branches of an application

• Purpose is automated restart on failure

11Friday, August 3, 2012

4 REQUIREMENTS TO BE OTP-COMPATIBLE

• Use proc_lib to spawn processes

• Handle {system, From, Msg} messages

• plain system messages

• sys:handle_system_msg/6 implements

• Respond properly to shutdown messages

• {'EXIT', Parent, Reason} -> exit(Reason)

• Handle {get_modules, From} for code upgrade

12Friday, August 3, 2012

SYSTEM-LEVEL TOOLS FOR MANAGING
PROCESSES

• proc_lib for creating

• Sys for controlling and debugging

• Erlang for tracing

• VM capability, not discussed further here

13Friday, August 3, 2012

PROC_LIB

• Allows tracking the spawn hierarchy

• Reports crashes with linked process context

3> proc_lib:spawn(F1)
 =INFO REPORT===
 dict: {dictionary,[{'$ancestors'[<0.156.0>]},
 {'$initial_call',
 {erl_eval,'-expr/5-fun-1-',0}}]}
<0.158.0>

14Friday, August 3, 2012

 HIBERNATING

• VM capability to shrink a process

• Removes call stack (including pending try/catch)

• Full garbage collect

• Resizes process to smallest possible

• Even if smaller than minimum process size

• gen_server/gen_fsm support this in API

15Friday, August 3, 2012

HIBERNATING RAW
PROCESSES

• proc_lib:hibernate(M,F,A)

• invokes erlang:hibernate/3

• identifies wake call

• reinstalls proc_lib crash reporting

•When message received

• uncompress, resize to minimum if too small

• wake function is called

16Friday, August 3, 2012

EXAMPLE: PAUSING MESSAGE RECEIVE

• jump to a selective receive loop

• resume back to original loop later

loop() ->
 receive
 {pause, Amt} -> wait(Amt);
 Msg -> handle(Msg)
 end.

wait(Amt) ->
 receive
 after Amt -> loop()
 end.

17Friday, August 3, 2012

OTP APPROACH

• sys:suspend transfers loop control to OTP sys code

•Never returns (directly)

•OTP receive loop only recognizes system messages

• sys:resume transfers back to user's receive loop

18Friday, August 3, 2012

OTP APPROACH (CONT.)

• sys:resume/2,3 calls user’s code

• User provided callback functions required:

• ?MODULE:system_continue/3

• ?MODULE:system_terminate/4

• ?MODULE:system_code_change/4

19Friday, August 3, 2012

WHEN A SYSTEM MSG ARRIVES:

• Call sys:handle_system_msg/6

loop(Debug_Opts) ->
 receive
 {system, From, Msg} ->
 sys:handle_system_msg(Msg, From, Parent,
 ?MODULE, Debug_Opts, Extra);
 Msg ->
 handle_msg(Msg),
 loop(Debug_Opts).
 end.

20Friday, August 3, 2012

3 RETURNS FROM SYS ALTERNATE RECEIVE
LOOP

• ?MODULE:system_continue/3

• user function jumps to user receive loop

• never returns (counterpart to sys:suspend)

• called by sys:resume

• ?MODULE:system_terminate/4

• supervisor issues terminate request

• user function should exit with same reason

21Friday, August 3, 2012

3 RETURNS FROM SYS ALT RECEIVE LOOP
(CONT)

• ?MODULE:system_code_change/4

• user function migrates any data structures

• then returns the Extra data

• sequence: suspend, code_change, resume

• implemented by reltool on app upgrade/downgrade

22Friday, August 3, 2012

DEBUG

•Manually insert trace/logging code into actual logic

• Initialize multiple options with sys:debug_options/1

• Sets types of debugging to enable

•OR, call a function for each type of debug option

• Trace, log, statistics, install custom function

23Friday, August 3, 2012

RECORDING DEBUG INFORMATION

• Low overhead method to debug manually chosen events

• Events are written to circular queue (in Debug_Opts)

•Defaults to 10 events, can be overridden

• sys:handle_debug/4 called to create an event

• User provides Format_Func(Device, Event, Extra)

• Custom format function for logging event

24Friday, August 3, 2012

VIEWING LOGGED DEBUG INFORMATION

• sys:print_log(Debug_Opts) => prints debug queue

• sys:log(Pid, print) => prints debug queue

• sys:log(Pid, get) => gets the debug queue

• sys:log_to_file(Pid, Filename) => log to a file (not RAM)

25Friday, August 3, 2012

INSTALLING TRACE
FUNCTIONS

• sys:install(Pid, {Function_Name, Init_State})

• Installed function inspects current state

• returns new state, reinstalls function

• returns done, uninstalls function

• sys:remove(Pid, Function_Name)

• allows manual turn off

26Friday, August 3, 2012

STATISTICS COLLECTION

• sys:statistics/2,3: elapsed time, reductions and message counts

• Uses install/remove to invoke sys implemented capability

• Requires manually inserting sys:handle_debug/4 in your code

•Options to start or end collection, and report statistics

27Friday, August 3, 2012

REPORT COMPACT SUMMARY
OF PROCESS STATE

• sys:get_status/1,2 returns a formatted summary

• User provides ?MODULE:format_status/2

• Added to gen_server/gen_fsm when crash reports killed VM

28Friday, August 3, 2012

DYNAMIC MODULE CODE
CHANGE

• Release handler requests dynamic modules for code change

• Sends {get_module, From}

• Process should respond From ! {modules, Modules}

• Lists all currently executing Modules

29Friday, August 3, 2012

DO IT YOURSELF!

• http://www.erlang.org/doc/design_principles/spec_proc.html

• http://www.erlang.org/doc/man/proc_lib.html

• http://www.erlang.org/doc/man/sys.html

• Example usage inside Erlang/SP library:

• https://github.com/duomark/erlangsp

• /apps/coop/src/coop_node_data_rcv.erl

30Friday, August 3, 2012

http://www.erlang.org/doc/design_principles/spec_proc.html
http://www.erlang.org/doc/design_principles/spec_proc.html
http://www.erlang.org/doc/man/sys.html
http://www.erlang.org/doc/man/sys.html
http://www.erlang.org/doc/man/sys.html
http://www.erlang.org/doc/man/sys.html
https://github.com/duomark/erlangsp
https://github.com/duomark/erlangsp

QUESTIONS

31Friday, August 3, 2012

