
The Ideal Programmer
Why They Don't Exist and How to Manage Without Them?

Mike Williams

(A.k.a. Grumpy Old Man)

History

• Worked with software since 1967

– First program in FORTRAN II on
IBM1130

• Developed real time embedded
telecoms software, mainly in
assembly language and C

• Developed the first Erlang VM
(JAM)

• Tried to “sell” Erlang for Ericsson

• Gave up trying to sell Erlang and
have worked as a manager for
about 20 years instead

– Have managed both small units
and large units (from 15 to 600
people), developing software

Ruminations

• Why are
– Some programmers

(Software Developers) so
much better than others?

– Some teams highly
productive and self
organizing and others
require extensive
management (processes)?

– Some software projects
very successful and some
less successful?

– Large software project very
hard to run as a lot of small
software projects?

I don’t have the answers,

but I have some thoughts.

Programmers
(a.k.a. Software Developers)

C++ Developer
About the Job

 Global Aerospace and Defence company have an urgent requirement for a C++ developer to start ASAP.

The C++ developer will be able to code, test and bug fix using C++

The C++ developer will have experience of doing this on a windows platform. have experience of using MFC and visual studio.

The C++ developer will also have experience of using MFC and visual studio.

This is a great opportunity for a C++ developer to work on cutting edge technology for a global company ……...

Senior Web Developer (C#)
About the Job
Senior Web Developer (C#) ……….

This is a superb new opportunity for a skilled .Net web developer working for an exciting company in Norwich.

The role will involve development of both public facing and back office websites, including greenfield projects.

Skills required:

C# (minimum 3 years), .Net 3.5 / 4 framework

ASP.Net MVC 3, LINQ, LINQ-SQL

XHTML, JavaScript, JQuery, CSS, AJAX

PHP and ActionScript desirable

Good knowledge of T-SQL, and SQL Server 2008

Web Services (REST / WCF), Windows Services

A complete understanding of web technologies and object oriented development e.g. Design patterns, SaaS.

Good understanding of enterprise architecture and Agile methodology

Good communication skills, comfortable working on their own

Experience of full application lifecycle development

Junior Web Developer/Designer
About the Job
Are you a junior designer/developer looking for the opportunity to work for a company where you can show case

your skills and really develop yourself!

This position would really suit someone who has graduated and carried out some work but really want the chance

to work for a company who are brimming with creative ideas. You will be part of a fun, motivated and developing

team.

The company

Well established publishing company who publish a huge range of both B2B and consumer magazines based in

Colchester. Trading for over 10 years they are a well known and reputable company with good career

development opportunities.

The Role

 Maintain/update their existing portfolio of websites

 Produce top quality xhtml and CSS based web pages.

 Producing email and artwork for external clients

 Report and draw opinion on statistics and latest trend

 Able to produce high-quality work in a fast-paced environment.

 Able to manage multiple projects and consistently meet project deadlines

The Person

 Experience of Analytics, SEO, accessibility and web standards

 Demonstrated ability to produce quality code in a team environment

 Excellent written and spoken communication skills

 Love the cutting edge and exploring new technologies

 Interested in working in the social networking space

 Good Knowledge of html, CSS, Cross Browser Compatibility and Adobe Photoshop.

 FTP and website management

 PSD to HTML/CSS Executions

 Expression Engine / Wordpress/ CMS experience

 LAMP Experience

 IT Support

Recruit programmers who
• can show that they are productive

• want to learn new technology and tools

• and have the right “mindset”

The Ideal Programmer

• Technically competent and experienced

• Understands what technology is applicable

• Not afraid to try out new technology

• Understands the need for software architecture

• Has worked with both successful and unsuccessful project and understand why the successful projects worked and why the unsuccessful
failed

• Documents his work with relevant and papers which will be useful to other people

• Refuses to do stupid things, write unnecessary documentation, use inappropriate software technology

• Understands that software needs to be maintained, probably by other people and prepares for it.

• Is both a team player and an individualist

• Can explain to other people what has been done

• Can understand vague requirements and turn them into strict well documented requirements and can check with the “customer” that this
is what they want

• Can read long and semi-formal specifications and understand what is important and what can be left out

• Is able to help in recruiting new team members

• Teaches new team members and helps to integrate them into the team

• Is tolerant of the fact that individual team members have different skills

• Understands his/her own skills and weaknesses

• Regards criticism, pointing out of bugs etc as helpful and does not get annoyed

• Does not get “possessive” about code

• Understands that all vital parts of the software development process are equally important (requirements, systems works, programming,
test, delivery, support)

• Accepts that parts of the code must be re-written

• Admits failure when things don’t work out as expected and askes for advice when needed

• Realizes that architecture and code need to be elegant

• Understands when a system is good enough to deliver, and when it isn’t

• Is prepared to work long hours when needed and is proud to deliver in time

• Is interested in customers’ needs and wants to help meet them

• Enjoys programming

Intelligence

or “The camel has two humps”
• A programmer must have the

right sort of intelligence
– http://www.eis.mdx.ac.uk/research

/PhDArea/saeed/paper1.pdf
– “Programming ability is not known to be

correlated with age, with sex, or with
educational attainment; nor has it been
found to be correlated with any of the
aptitudes measured in conventional
„intelligence‟ or „problem-solving-ability‟
tests.”

– “despite the admonition of the
computer science establishment to
construct programs top down, experts
build them bottom-up.”

– “the majority of good debuggers are
good programmers, but not vice-versa”

– “Programmers, who on the whole like
to point and click, often expect that if
you make programming point-and-click,
then novices will find it easier. The
entire field can be summarised as
saying “no, they don‟t”.”

http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf
http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf

There are three types of people:

1. People who effortlessly learn to program

and don’t need any formal education

2. People who can be taught to program

3. People who haven’t a clue what it is all

about and never will be able to write a

significant program

• The third group is by far the largest!

Reality

• The only safe way to determine a

person’s programming ability is by

observing the person’s

programming performance in

practice

A good programmer must enjoy programming!

• Wants to develop

useful applications
– Finds out what the

customer needs and

delivers it.

– Sometimes customers

don’t know what they need

• Wants to continue being

a programmer

• Hates interference by

managers who don’t

understand software

A good programmer wants to learn new things

• Programming languages

• Tools

• Operating systems

• Applications

• Is prepared to make

experiments

• Learns from mistakes

A good programmer understands the big picture

• Programming is a trial and error process

• Prepared to spend lots of time:

– Testing

– Writing necessary documentation

– Working with, helping and teaching others

– Maintaining and re-writing old code

– Adding new features

• Tolerates the fact that capability and knowledge

varies hugely between people and programmers

Teams & Projects – Essentials

• A software

development team

must have a clear and

consistent vision of:

– What are we going to

develop?

– Why are we doing

developing it?

– How are we going to

develop it?

http://www.computer.org/csdl/mags/so/2012/03/mso2012030104-abs.html

http://www.computer.org/csdl/mags/so/2012/03/mso2012030104-abs.html
http://www.computer.org/csdl/mags/so/2012/03/mso2012030104-abs.html
http://www.computer.org/csdl/mags/so/2012/03/mso2012030104-abs.html

What

• In some cases a detailed

specification

• In some cases a standard

• Sometime a vague idea is

enough, e.g.

– A non SQL database

– A chat server

• A vague idea of a multi-

function product with lots

of bells and whistles is a

recipe for disaster!

Why

• To be motivated, you need to

know why you are developing

software

– You need to see the big picture,

where the (maybe tiny part) you

are developing fits in and why it is

useful

– You need to believe that the final

product serves a useful purpose

How
• Different parts of a system may use different software technology

– There must be a strategy of how it all fits together

– Parts with similar functionality need to use the same technology

– There must a reason for the choice of technology for the various
different parts

– Technology need to be decided based on what the team feels right, not
obscure company policy

– People must enjoy working with the software technology

– Elegance is not optional (Richard O'Keefe)

Teams

• Since we don’t have ideal

programmers, a software

development team must

have as many of the

aspects of an idea

programmer as possible

• Must avoid the traditional

large company fragmented

approach

– Each team member must be

able to take on new other roles

when necessary

By what about Agile?

• Good programmers and effective teams have been
working in an Agile manner for man years before
– SCRUM

– XP

– Kanban

 was invented.

• Scrum masters, backlogs, sprints etc are OK, but let’s
face it: There is too much religion!

• There are plenty of examples of highly efficient and
technically competent software development teams who
have found there own “Agile” ways of working.

The Guru

• Each project needs a Guru

– Most important: Detailed knowledge of the
application being developed or maintained

– Understands the overall architecture of the
design

– Can explain the details to other people

– Is, at heart, a programmer but maybe doesn’t
program on a day to day basis

– If he/she can’t answer a question, knows who
can answers and learns themselves.

The all-rounder and experimenter
• Understands the software technology being

used.

• Can
– jump in and help with any part of the product

– work with any of the software technologies being
used

• Does experiments with parts of the product to
see to test improvements in:
– Simplicity and elegance

– Performance

– User friendliness

– Development efficiency

The organiser and enthusiasm

bringer

• Has a plan for how and when the various parts

need to be ready and how they be integrated.

• Is at heart a programmer and can understand

when things are working and when they are not

– Is able to start remedial action without humiliating

anyone

• Maintains the “What, Why and How” spirit of the

project

– Human skills as important as software skills

The mechanic

• Keeps the development infrastructure working

– Servers and backup

– Version control

– Programming

– Requirements

– Build

– Test framework (both automated and manual)

– Delivery

– Mail, Wikies, other communication

– Bug handling systems

The super tester

• Understands the application nearly as well as
the Guru

• Can work out all the peculiar things which can
happen to make the system go wrong

• Is able to explain in details why the faults he/she
find have occurred and how to reproduce them
– Makes other happy that he/she has found a fault

• Can often suggest remedies or “quick fixes” to
keep the project on track.

• Checks test coverage and suggests way to
improve coverage.

The librarian, integrator and

maintainer

• Sometimes the same as the “mechanic”

• Maintains the over-all version control

strategy and checks that things are

checked in correctly

• Maintains the test, build and delivery

system so that anybody can produce a

complete “delivery system” in a few

minutes if and when needed

The documenter

• Understands the application nearly as well as
the Guru

• Understands what needs to be documented and
what doesn’t

• Understands the needs and knowledge of those
who read the documentation

• Is able to write clearly, grammatically, concisely
and pedagogically and is able to help other
people to do so

• Is a programmer at heart

The madmen (aka programmers)

• All good programmers are mad

– You have to be mad to be prepared to work in

a trial and error fashion

• A good programmer and “turn his/her

hand” to any aspect of software design.

• A good programmer is an individualist who

is capable of working with other people

A question you need to ask

• Is there a process in place (either formally documented, or well known
which describes how:

– requirements are found

– requirements are broken down into systems architecture

– parts of the architecture are programmed

– parts are tested

– system is built

– system is tested

– system is delivered

– system is maintained

– version control is done

– etc

• If you don’t have this, you are in trouble.

• If you believe you can slavishly follow such a process, you are in deeper
trouble.

– See A Rational Design process: How and Why to Fake it. David L. Parnas
http://web.cs.wpi.edu/~gpollice/cs3733-b05/Readings/FAKE-IT.pdf

