
MeshUp
And other Riak hacks

Klarna
• Simplify buying online

• Founded in 2005

• 7.5M users in the Nordics, Germany, Austria, the
Netherlands

• >2B USD in transactions this year

• 700KLOC Erlang system

• 80ish Erlang developers

The Product
• Hand-crafted vintage XML-RPC API

• Pretty standard payments-as-a-service

• Except that Klarna assumes the risk for both
sides without requiring users to have an
account

• Users need to be identified and scored

The Workload

• Low volume, high latency

• High complexity

• Must always accept purchases

• Must not lose accepted purchases

Mnesia

• Has worked so far

• But we're really hitting its limits

• Started looking at alternatives in 2011

Riak
• Always writable :-)

• Configurable replication :-)

• Reasonable latency :-)

• Single-object guarantees only :-(

• Eventual consistency :-(

Migration

• Need a replacement for Mnesia transactions

• Somewhat ambitious refactoring needed
anyway

• How do we want our application to look?

MeshUp
• Toolkit for writing applications which separate

business logic from effects

• Enable functional programming in the presence
of a shared database

• Essentially an interpreter for a DSL

• Call it a workflow engine to make people less
worried

Basic Idea

• Computation = workflow = series of methods
to call

• Data = snapshot of database = dictionary
threaded through the calls

Details
• MeshUp provides only policy, no mechanism

• To execute an operation, the engine calls out to
implementations of three foundational interfaces

• meshup_endpoint declares the workflow for a specific
operation

• meshup_service adapts pure Erlang code to the
MeshUp calling conventions

• meshup_store abstracts side effects/database

Endpoints

-module(my_endpoint).
-behaviour(meshup_endpoint).
-export([flow/0]).

Workflows

Step 1
Step 2

...
Step N

Workflows

[Step1,
 Step2,

...
 StepN]

Workflows

[{service1, method1} = Step1,
 {service2, method2} = Step2,

...
 {serviceN, methodN} = StepN]

Workflows

• Arguments implicit

• Unix pipes

Services

-module(my_service).
-behaviour(meshup_service).
-export([call/2, describe/2]).

Methods
call(my_method, Ctx) ->
 my_mod:my_fun(
 meshup_contexts:get(Ctx, ...),
 ...);
...

describe(my_method, input) ->
 ...;
describe(my_method, output) ->
 ...;
...

Contracts

Name 1
Name 2

...
 Name M

Contracts

[Name1,
 Name2,

...
 NameM]

Contracts

[[namespace1, bucket1, key1] = Name1,
 [namespace2, bucket2, key2] = Name2,

...
 [namespaceM, bucketM, keyM] = NameM]

Contracts

[{[namespace1, bucket1, key1], [{store, my_store}]},
 {[namespace2, bucket2, key2], [{store, your_store}]},
 ...
 [namespaceM, bucketM, keyM]]

Contracts

• Actually, arbitrary term structure

• Dynamic contracts via the MeshUp pattern
matcher

Stores

• Read, write, delete

• Representation

• Conflict resolution

Stores

-module(my_store).
-behaviour(meshup_store).
-export([put/2, get/1, del/1]).
-export([bind/2, return/3]).
-export([merge/3]).

Stores

• Meaning of names defined by what stores do
with them

• Naming convention ~ query language

API

{ok, Ctx} = meshup:start([{endpoint, my_endpoint},
 {input, Input}])

Basic Idea

• Computation = workflow = series of methods
to call

• Data = snapshot of database = dictionary
threaded through the calls

Execution Model
Ctx0 = Input,
Ctx1 = read(Ctx0, InContract1),
Res1= compute(Method1, Ctx1),
Ctx2 = write(Ctx1, Res1, OutContract1),
...
ok = commit(Ctx),
Ctx.

Data Context

• Reads are cached in the context

• Writes are buffered in the context

Read guarantees

• Read-your-writes

• Reads idempotent

Write guarantees

• Atomic durability for the write-set associated
with a workflow

• Failed writes won't show up in the database

Writing to Riak reliably

• Special Riak bucket used as WAL

• Per-node disk_log tracks state of commit

FSM

LOG COMMITPREPARE

CLEANUP

error

ok

ok

ok

error error

Custom commit
strategies

• Pluggable session store

• Pluggable logger

• Commit mode "write_set"

Data consistency

• Exploit ability to hook into all reads and writes
cleanly to make it as easy as possible to write
sound eventually consistent programs

Composable Resolvers

• meshup_resolver behaviour

• from_fun/1, to_fun/1, compose/2

• Used in meshup_stores' merge/3 callbacks

Preemptive Conflict
Resolution

• Whenever a service updates a value which is
associated with some store, MeshUp attempts
to merge/3 the new and old values

• Can enable/disable on a per-key basis by
matching on the first argument of merge/3

Misc Features
• Session handling

• meshup:transaction(Fun, ReadSet, WriteSet)

• Global read/write policies

• Interactive shell

• Linter

• Promises

Future Work

• Read scheduling

• Post-mortem debugger

• Lazy contexts

• Caching annotations

Supporting code

• KRC - simple Riak client

• RiMU - implementation of MeshUp interfaces
for Riak

Conclusion

• "All problems in computer science can be
solved by another level of indirection." -David
Wheeler

• "Every system is either an interpreter or a
compiler." -Don Stewart

Q & A

