A

EFL Munich
February 2013

A\

N

Qﬂﬂ

®

TECHNOLOGY

PUSH® (%52 PUSH®
q Qe

* Distributed Systems / HPC guy.

e Chief Scientist :- at Push Technology

e Alumnus of :-

Motorola, IONA, Betfair, JPMC, StreamBase.

e School: Trinity College Dublin.
- BA (Mod). Comp. Sci.+
- M.Sc. Networks & Distributed Systems

* Responds to: Guinness, Whisky

About me?

Copyright Push Technology 2012

e % 1
TECHNOLOGY ~, @
—1
' C tional
Eér’ gt
with

Big Data. The most important V is

Value.
o 4\/s: :
 “It’s the connections
 Volume)
. Velocity that matter most
* Variety - David Evans, Cisco
* Variability

Number of Internet objects Number of theoretical connections (0.001%)
1 -

100 0

1,000 5

1,000,000 4,999,995

1,000,000,000 4,999,999,995,000
(Today) 10,000,000,000 499,999,999,950,000
(By 2020) 51,597,803,520 13,311,666,640,184,600

Copyright Push Technology 2012 Data Qn Demand

Connect all the things

What Happens in an Internet Minute?

20 47,000 61,141

New victims of App downloods Hours of music
identity theft

20 million 3,000

204 million $83,000 Photo views Photo uploods

100,000
New tweets

=R

Search queries \Q
And Future Growth is Staggering [z | st — =
. (n gD PN e
Today, the A By 2015, the 2.“& In 2015 1 sf d':omoﬂ
number of - number of =1 it would fake < VA DEE
networked devices the global networked devices the global you 5 y“n: 1P m

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

An Internet Minute

What Happens in an Internet Minute?

=4 10k, 1ms 1k, 100us

Hours 12600000 7200000

= 8 Minutes 210000 -] 120000

And Future Growth is Staggering -M$ & Seconds 3500 MT.;; 2000
SR N Sy v Vet Millis 3.5 2

Minutes, Seconds, Millis of Internet time

1.00E+11
1.00E+10
1.00E+09
1.00E+08
1.00E+07
1.00E406
1.00E+05

%LL;LLL[L[&LLL[LLLLLL[

e
1.00E-02 u I -
1.00E-03 ‘
1.00E-04
New Apple Pandora Flickr YouTube NA EU praw
BotNet New New P Amazon New New Somethin Currency
Global 1P Identity =~ Emails App Music Photo Facebook Google Uploads YouTube Equities Equities
Infection Wikipedi Mobile Sales Linkedin Twitter Tweets £ Market
Data (GB) Theft Sent (M) Downloa Listened Views Logins Searches (Video Views = Market = Market
s a Articles Users usp Accounts Accounts DOrawings Prices
Victims ds (hours) (M) Hours) Data (8) Data(B) [9wks]

(WHour |3.84E407)7.926+03|3.606402|1 206403 |1.226404 | 7.80+04|2.82€406 |4.98E406 |3.67E+06 | 6.00€403 | 1.208 403 | 1.926 404 6.00€ +06 | 1.66£407 | 1.20€ 408 |1.80E+03) 7.80407| 1.08€+10| 7.20€ 408 1.26€+07 7,20 406 |
| ®Minute '6440E005'1,32E402.6.00€400.2.00E&01.Z.OGEOOZ.1.30E403.d.70E004.830&&0& '6.11E404.1,00(402.2.00&01.3.20!‘.&02.1.00E405.2.775405.2.00&06.3.00!‘.001.1.30E¢06.1.805‘08.LZOE&O?.Z.IOEOOS.1.20E¢05‘
| Second |1.07E+04)2.20E400| 1.00E-01 | 3.336-01 |3.40E400| 2.17E401|7.836+02 | 1. 38E+03 | 1.02E403| 1.676400| 3.336-01 |5.33E+00| 1.67€+403|4.62€403 | 3336404 | 5.00€-01 | 2.17E+404|3.00£+06 |2.00E+05 |3.50E+03 | 2.00E403
(S Millis |1.07E+01) 2.20€-03 | 1.00E-04 | 3.336-04 | 3.40E-03 | 2.176-02 | 7.83E-01 | 1.38E+00 | 1.02E+00| 1.67E-03 | 3.33E-04 | 5.33-03 | 1.67E+400|4.62€400|3.33E+01 | 5.00€-04 | 2.17€+401 | 3.00£+03 | 2.00E+02 |3.50E+00| 2.00E400|

Hour ™ Minute Second = Millis

Copyright Push Technology 2012 Data ©n Demand pUSH @w

TECHNOLOGY

The Last Mile is HARD

—
5 Al @ 4:33em
PushToQuote
PUSH® Subscribe
Crr—TTT
pUsH @ Symbol Bid Price Ask Price Spread Mid
TECANOLOGY EURUSD 153 153 001 153
GBPUSD 173 182 009 178
EURUSD GBPUSD USDIPY 9981 9831 s 99.06
Sell Buy sell Buy USDCHF 113 112 0.0 112
v8687Y 0103Y EURGBP 0.1 092 001 091
USDHKD 871 84 031 855
USDIPY USDCHF USDDKK ~ 5.29 5.04 025 516
sest ey sel ou EURNOK 916 909 007 913
v1618v wgygzv GBPNZD 243 236 007 24
EURSEK 1088 1 024 10,99
'z‘jl"“”n i"“‘“" EURJPY 13689 13989 30 13839
VR EURCHF 157 164 0.07 16
CEIE USDZAR 7.71 775 004 773
USDSEK ~ 7.09 716 007 712
GBPCHF 174 18 0.05 177
GBPJPY 16551 15387 164 15969
. USDSGD 15 156 006 153
Download Bandwidth
GBPCAD 1.83 207 024 195
L4 ’ USDNOK 5.79 5.74 015 577
USDCAD .82 181 001 1.81
30.00 U ' AUDUSD o038 09 002 089
o

20.00
==Expected (Mbps)

10.00 N
M Lrﬂ% - N Download (Mbps) U M @
0.00 : : :

T Il

-10.cep=06 Oct-06 Oct-06 Nov-06 __ Dec-06 Dec-06 Jan-07 Eeb-07

Latency

1.00E+00

1.00E+01 === | atency (ms)

y - -1,
1.00E+02 4”2‘?!' —=)
] =0.02496 =—Expected (ms)

1.00E+03

— Linear (Latency (ms))

1.00E+04 T T T T T T
Sep-06 Oct-06 Oct-06 Nov-06 Dec-06 Dec-06 Jan-07 Feb-07

Copyright Push Technology 2012 Data -On Demand pUSH @m

TECHNOLOGY

Conversations

M2M M2H

Traditional Messaging Bidirectional Real
MQTT, AMQP Time Data Distribution

WebSockets

W3C Server Sent
Events

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Traditional Messaging

Producers

Pros Cons

* Loosely coupled. * No data model. Slinging blobs

* All you can eat messaging patterns * Fast producer, slow consumer? Ouch.
e Familiar * No data ‘smarts’. A blob is a blob.

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Invented yonks ago...

Before the InterWebs
For ‘reliable’ networks
For machine to machine

Remember DEC Message Queues?

- That basically. Vomit!

Copyright Push Technology 2012 Data Qn Demand pUSH @w

TECHNOLOGY

When fallacies were simple

—The network is reliable
—Latency is zero

—Bandwidth is infinite

—There is one administrator
—Topology does not change
—-The network is secure
—Transport cost is zero

—The network is homogeneous

Copyright Push Technology 2012 Data Qn D emand

Then in 1992, this happened:

The phrase ‘surfing the internet’ was coined by Jean Poly.

First SMS sent

First base.

Data On Demand

It grew, and it grew

Data On Demand

Then in 2007, this happened:

The gOd phone:

Surfing died. Touching happened.

Second base unlocked.

Data ©n Demand

Then in 2007, this happened:

So we took all the things and put them in the internet:
Cloud happened.

So we could touch all the things.

Messaging
Apps

They grew and they grew like all the Hardware
Virtualize all the things

good things do.
Services

Skills,
Specialties

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Then in 2007, this happened:

And it grew and it grew.

Like all the good things do.

Messaging
Apps
Hardware
Virtualize all the things
Services

Skills,

Specialties

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

So we scaled all the things

Big data is fundamentally about extracting value, understanding
implications, gaining insight so we can
learn and improve continuously.

It’s nothing new.

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

But, problem: The bird, basically.

Immediately Inconsistent.
But, Eventually Consistent

... Maybe.

Humans
Are

grumpy

Data ©n Demand

Stop.

—The network is not reliable

nor is it cost free.
—Latency is not zero

nor is it a democracy.
—Bandwidth is not infinite

nor predictable especially the last mile!
—There is not only one administrator

trust, relationships are key
—Topology does change

It should, however, converge eventually
-The network is not secure

nor is the data that flows through it
—Transport cost is not zero

but what you don’t do is free
—-The network is not homogeneous

nor is it smart

Copyright Push Technology 2012 Data -On Demand pUSH @m

TECHNOLOGY

Look.

—What and How are what geeks do.

-Why gets you paid

—Business Value and Trust dictate What and How

— Policies, Events and Content implements Business Value

—Science basically. But think like a carpenter:

—Measure twice. Cut once.

Copyright Push Technology 2012 Data ©n Demand pUSH @m

TECHNOLOGY

Listen.

— Every nuance comes with a set of tradeoffs.

— Choosing the right ones can be hard, but it pays off.
— Context, Environment are critical

— Break all the rules, one benchmark at a time.

— Benchmark Driven Development

Copyright Push Technology 2012 Data -On D emand.

Action: Data Distribution

Messaging remixed around:

Relevance - Queue depth for conflatable data should be 0 or 1. No more

Responsiveness - Use HTTP/REST for things. Stream the little things

Timeliness - It’s relative. M2M = M2H.

Context - Packed binary, deltas mostly, snapshot on subscribe.

Environment- Don’t send 1M 1K events to a mobile phone with 0.5mbps.

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Action. Virtualize Client Queues

Producers

Nuance: Client telemetry. Tradeoff: Durable subscriptions harder

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Action. Add data caching

Producers Consumers

One hop closer to the edge ...

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Action. Exploit data structure

2D Q >

Snapshot Delta

Producers Consumers

—— e = = — = —

Snapshot recovery. Deltas or Changes mostly. Conserves bandwidth

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Action. Behaviors

The
topic is
the
cloud!

Consumers

Producers

Extensible. Nuance? Roll your own protocols. Tradeoff? 37 party code in the engine :/

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Action. Structural Conflation

Current

Consumers
data!

Ensures only current + consistent data is distributed. Actively soaks up bloat. Extensible!

Copyright Push Technology 2012 Data Qn Demand pUSH @w

TECHNOLOGY

Action. Structural Conflation [EEP]

C2 | A2 | C1 | Bl |Al —» Cop Bop‘Aop ‘ l
C2 A2 | C1 B1 | Al C2 B1 (A2 Current

5 4 3 2 A 5 1 4
Current
C2 | A2 |C1 Bi1 |Al [C2 B1 A+ +
5 4 3 o 1 8 1 5 Consistent
C2+Ci A2+ A1
Replace Merge oo o
* Replace/Overwrite ‘A1’ with ‘A2’ * Merge Al, A2 under some operation.
e ‘Current data right now’ e Operation is pluggable
* Fast * Tunable consistency

* Performance f(operation)

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Implement w Client ©

main_loop(Pid,Count) ->
receive
{snapshot, Topic , _Headers , Body } -> io:format("Snapshot: ~s ~s~n", [Topic , Body]);
{delta, Topic , _Headers, Body } -> io:format("Delta: ~s ~s~n", [Topic , Body]);
{ping, Timestamp} -> io:format("Ping: ~w ~n", [Timestamp]);
{topic_status, Topic, Status} -> io:format("Topic Status: ~s ~s~n", [Topic, Status]);

What -> io:format("Unexpected: ~w ~n", [What])
after 10 -> ok
end,
main_loop(Pid,Count+1).

Copyright Push Technology 2012 Data f)n Demand pUSH @m

TECHNOLOGY

Example Diffusion §e23- Client

handle_event({log, Message}, #diffusion_lager_be_state{level = _L,
formatter = Formatter,
format_config = FormatConfig } = State) ->
Msg = Formatter:format(Messfge,FormatConfig),
{ok, push(State,Msg)};

push(State, Msg) ->
erlang:list_to_binary(State#diffusion_lager_be_state.topic),
io_lib: format("~s",[Msg]),
erlang:list_to_binary(lists:flatten(R)),
pusherl_client:send(State#diffusion_lager_be_state.cli, T , << S/binary >>),
State.,

Backend to Basho’s Lager logging — Stream log events for near real-time analysis ...

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

PUSHO \[}ﬂ% Jﬁ
TECHNOLOGY ~, @
—1];;l" o
+ | h. o8
%ﬁ Benchmark Driven 0
Development

‘Measuring Value’

Performance is not a number

Copyright Push Technology 2012 Data Qn Demand pUSH @w

TECHNOLOGY

Benchmark Models

Box A Box B
Throughput (Worst case) Latency (Best case)
* Ramp clients continuously e Really simple. 1 client
* 100 messages per second per client * Ping — Pong. Measure RTT time.
* Payload: 125 .. 2000 bytes * Payload: 125 .. 2000 bytes

* Message style vs with conflation

Copyright Push Technology 2012 Data -On Demand pUSH @m

TECHNOLOGY

Throughput. Non-conflated

WebSocket Bandwidth No Conflation

1.2e+09 T | [o
T 0 bytes, —
1000 bytes
16409 |- 500 bytes
8e+08
[0}
(0]
[
i
(0]
5 6e+08
3
T
=
[}
i
4e+08
2e+08
0 | | | | | |
0 30 60 9 120 150 180 210 240 270 300
Elapsed Time (seconds)

Copyright Push Technology 2012

Data On Demand

Cold start server

Ramp 750 clients ‘simultaneously’ at 5
second intervals
5 minute benchmark duration

Clients onboarded linearly until 10
(here) or compute saturation occurs.

What the ‘server’ sees

PUSH®

TECHNOLOGY

Throughput. Non-conflated

* What the ‘client’ sees
WebSocket Messages Per Second Per Client No Conflation

120 \ | ' | l | l ! * At and beyond saturation of some
2000 bytes 2
resourcer-
1000 bytes
100 - :
* Things break!
80 * New connections fail. Good.
* Long established connections ok.
o * Recent connections timeout and client
g 60 connections are dropped. Good.
ol * Diffusion handles smaller message
sizes more gracefully
20 - i * Back-pressure ‘waveform’ can be
tuned out. Or, you could use structural
conflation!
0 | | | | | | | | |

0 30 60 90 120 150 180 210 240 270 300

Elapsed Time (seconds)

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Throughput. Replace-conflated

WebSocket Bandwidth Replace Conflation * Cold start server

1.2e+09 1. | [Lo J I] . .
T o bytes —— * Ramp 750 clients ‘simultaneously’ at 5
‘ 1000 bytes ——— second intervals
16409 - 500 bytes ——— |
250 bytes —— . ;
125 bytes ——— * 5 minute benchmark duration

8e+08
* Clients onboarded linearly until IO

(here) or compute saturation occurs.
6e+08

* Takes longer to saturate than non-
conflated case

Bandwidth GBsec

4e+08

° Handles more concurrent connections
2e+08

e Again, ‘server’ view

0 30 60 9 120 150 180 210 240 270 300 330

Elapsed Time (seconds)

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Throughput. Replace-Conflated

° { H 7
WebSocket Messages Per Second Per Client Replace Conflation What the ‘client’ sees

120 I I | I | | | | |

2000 bytes —— ¢ Once saturation occurs Diffusion
1000 bytes ——— adapts actively by degrading messages
100 - 500 bytes ——— | per second per client
250 bytes ———
5 bytes ———
e Thisis good. Soak up the peaks
80 - 7 through fairer distribution of data.
2 ol | * Handles spikes in number of
2 connections, volume of data or
saturation of other resources using a
20 - i single load adaptive mechanism
20 =
0 | | | | | | | | | |

0 30 60 90 120 150 180 210 240 270 300 330

Elapsed Time (seconds)

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Throughput. Stats

e Data /(Data + Overhead)?
e 1.09 GB/Sec payload at saturation.
* 10Ge offers theoretic of 1.25GB/Sec.
* Ballpark 87.2% of traffic represents business data.

* Benefits?
e Optimize for business value of distributed data.
* Most real-world high-frequency real-time data is

recoverable
e Stock prices, Gaming odds

 Don’t use conflation for transactional data, natch!

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Latency (Best case)

Latency Summary Histogram ¢ Cold start server

1e+06 | | | . .
2000 bytes [* 1 solitary client
900000 1000 bytes I
500 bytes (N . .
800000 |- 250 bytes B * 5 minute benchmark duration
125 bytes
700000 - : L
* Measure ping-pong round trip time
, 600000 - -
0]
g e Results vary by network card make,
© 500000 - = e .
3 model, OS and Diffusion tuning.
o
400000 |- =
300000 i
200000 -
100000 =
0 | | |
0 200 400 600 800 1000

Round Trip Time [us]

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Latency. Round Trip Stats

RTT WebSocket Latency Statistics * Sub-millisecond at
100,00 the 99.99%
percentile
* Aslowas 15
microseconds
F 10000 * Onaverage
3 significantly sub
g 100 microseconds
5 . for small data
E
'g B Mean
0.
g 1000 -
99 99%
1.00 . '

) 2000 bytes | 1000 bytes 500 bytes | 250 bytes | 125 bytes]

‘Min 23.82 l 20.91 I 17.52 l 16.14 l 15.58 ‘I

Mean 131.53 l 106.29 j 95.59 l 66.24 l 62.70 j

99% 250.00 | 130.00 \ 120.00 | 100.00 | 100.00 |

99.99% 800.00 | 790.00 780.00 750.00 | 750.00

Message Payload Size (bytes)

Data ©n Demand pUSH @

TECHNOLOGY

Copyright Push Technology 2012

Single Hop Latency us [log |

Latency. Single Hop Stats

Approximate Single Hop WebSocket Latency Statistics

1000.00
100.00
10.00
1.00
2000 bytes 1000 bytes 500 bytes 250 bytes 125 bytes
Min 11.91 \ 10.46 \ 8.76 \ 8.07 \ 7.79
Mean 65.76 \ 53.15 \ 47.80 \ 33.12 \ 31.35
99% 125.00 \ 65.00 \ 60.00 \ 50.00 \ 50.00
99.99% 400.00 395.00 390.00 375.00 375.00
Message Payload Size (bytes)

S Min

& Mean
99%

599.99%

Copyright Push Technology 2012

Data On Demand

Sub 500
microseconds at
the 99.99%
percentile

As low as 8
microseconds

On average
significantly sub 50
microseconds for
small data

PUSH®

TECHNOLOGY

Latency in perspective

125 1000

bytes bytes
(avg) (avg)
>
2.4 us 5.0 us 8.0 us 50.0 us

J————————

e 2.4 us. Atuned benchmark in C with low latency 10Ge NIC, with kernel
bypass, with FPGA acceleration

* 5.0 us. A basic java benchmark —as good as it gets in java
* Diffusion is measurably ‘moving to the left’ release on release
* We've been actively tracking and continuously improving since 4.0

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

B

) | |
%ﬂ" Embedded

Event
Processing

CEP, basically

» mdE-»

What is eep.erl?

* Add aggregate functions and window operations to Erlang
* Separate context (window) from computation (aggregate fn)

* 4 window types: tumbling, sliding, periodic, monotonic
* Process oriented.

Fast enough. ©

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Aggregate Functions

-module(eep_aggregate).
-export([behaviour_info/1]).

behaviour_info(callbacks) ->

[{ init, 0} , { accumulate, 2}, {compensate, 2}, {emit, 1}];

behaviour_info(_.) ->
undefined.

What is an aggregate function?

* A function that computes values over events.
* The cost of calculations are ammortized per event
* Just follow the above recipe

* Example: Aggregate 2M events (equity prices), send to GPU
on emit, receive 2M options put/call prices as a result.

Copyright Push Technology 2012 Data 91‘\ De mand pUSH @m

TECHNOLOGY

Aggregate Function Example

%% aggregate behaviour callbacks.
-export([init/@]).
-export([accumulate/2]).
-export([compensate/2]).
-export([emit/1]).

init() ->
Q.

accumulate(State,X) ->
case State >= X of true -> State; false -> X end.

compensate(State,X) ->
case State >= X of true -> X; false -> State end.

emit(State) ->
State.

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Tumbling Windows

x() x0 x() x()

S S
x() x(x() x0 emit()

1 2 3 4
Of_, i i i i)0 x0 xO0 x0 emit()

init) 2 3 4 5

init()

emit()

—~

init()

v

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11
What is a tumbling window?
* Every N events, give me an average of the last N events
* Does not overlap windows

* ‘Closing’ a window, ‘Emits’ a result (the average)
* Closing a window, Opens a new window

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Tumbling Windows

Eshell V5.9.3 (abort with AG)
1> P = eep_window_tumbling:start(eep_stats_sum,4).
<0.34.0>
2> P ! {add_handler, eep_emit_trace, []}.
{add_handler,eep_emit_trace,[]}
3> [P! {push, X} ||l X <- lists:seq(1,24)], ok.
10

Emit:
ok

Emit:
Emit:
Emit:

26
42
58

. 74
: 90

Copyright Push Technology 2012

Data ©n Demand

PUSH®

TECHNOLOGY

Sliding Windows - O(Long Story)
mo”) TN T\

x() ‘;L“ LZL‘

Ll i ot S P i s i
Lo ol ol ot ol e il ol S
-— - e e e e - e - - - -y - - - -

ﬂ
I
AT

|
i

\/

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11
What is a sliding window?
* Like tumbling, except can overlap. But O(N?), Keep N small.
e Every event opens a new window.
* After N events, every subsequent event emits a result.
* Like all windows, cost of calculation amortized over events

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Compensating Aggregates

T, 7y 7y

T

3
W]
I

.................

do { S

} while (...)

Lol ol o i i il o i
L it o Iy i e Y it
e e e e e e e e e e e e - -

<+—— compensate()

]

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

5> f(P).
(0]4
6> P = eep_window_sliding:start(eep_stats_sum,4).
<0.41.0>
7> P ! {add_handler, eep_emit_trace, []}.
{add_handler,eep_emit_trace,[]}

8 [

Emit;

ok

p

Emit:
Emit:
Emit:
Emit:
Emit:

Copyright Push Technology 2012

Sliding Windows.

! {push, X} || X <- lists:seq(1,9)], ok.

10

14
18
22
26
30

Data ©n Demand

PUSH®

TECHNOLOGY

() x0 x() x(

R T o
.) x0 x0 x0 emit()

2] R
of_, x() x() x() x() emit()
¢ S A i I O T T R S
init()
P 2 3 | 4|5
init()
in?g—>
>
= to t3

t1
What is a periodic window?

* Driven by ‘wall clock time’ in milliseconds

* Not monotonic, natch. Beware of NTP

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Periodic Windows

main(_Args) ->
P = eep_window_periodic:start(eep_stats_count,1000),
P ! {add_handler, eep_emit_trace, []},
P! tick,
main_loop(P,1).

main_loop(Window,Count) ->
%timer:sleep(100),
Window ! {push, 1},
Window ! tick,
i0:format("Count: ~w~n", [Count]),
main_loop(Window,Count+1).

Copyright Push Technology 2012 Data Qn De mand pUSH @m

TECHNOLOGY

Monotonic Windows

r:\ r:\ r:\
() x() () x0(

N S SR o
1 2 3 4 iX() iX())i())i() emit()
(["’ 5 x() x() x() x() emit()

' T 1
.

init()

t0 t o t2 t3
What is a monotonic window?

* Driven mad by ‘wall clock time’? Need a logical clock?

* No worries. Provide your own clock! Eg. Vector clock

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

Monotonic Windows

main(_Args) ->
P = eep_window_monotonic:start(eep_stats_count,eep_clock_count,1000),
P ! {add_handler, eep_emit_trace, []},
main_loop(P,1).

main_loop(Window,Count) ->
Window ! {push, 1},
Window ! tick,
main_loop(Window,Count+1).

Copyright Push Technology 2012 Data Qn De mand pUSH @m

TECHNOLOGY

EEP looking forward?

 Migrate windows from simple processes to gen_server.

» Extract library (no process / message passing overhead).

* Consider NIFs for performance critical sections.

* Consider native aggregate functions.

 Consider alternative to gen_event for interfacing

e Streams / Pipes? Hey, shoot me, but | like Node.js Streams/Pipes.
 Add more functions.

 Add more languages

* Node.js EEP — https://github.com/darach/eep-js

e React/PHP EEP - https://github.com/ianbarber/eep-php

Copyright Push Technology 2012 Data Qn Demand pUSH @m

TECHNOLOGY

PUSH® (%52 PUSH®
Qe

I * Thank you for listening to, having me

~

 Le twitter: @darachennis

 EEPin Erlang / PHP / Node.js:

https://github.com/darach/eep-erl
e https://github.com/ianbarber/eep-php

T
https://github.com/darach/eep-js

Nt .
’j’ﬁ @% * Push Technology’s Diffusion product now

QQO supports Erlang Clients too.
[Alpha, ping me if interested, email below]

PROMO CODE: :
ENNI100 Questions?

March 4-8, 2013

Copyright Push Technology 2012

