

- Distributed Systems / HPC guy.
- Chief Scientist :- at Push Technology
- Alumnus of :-

Motorola, IONA, Betfair, JPMC, StreamBase.

- School: Trinity College Dublin.
 - BA (Mod). Comp. Sci.+
 - M.Sc. Networks & Distributed Systems
- Responds to: Guinness, Whisky

About me?

Big Data. The most important V is Value.

- 4Vs:
- Volume
- Velocity
- Variety
- Variability

- "It's the connections that matter most"
 - David Evans, Cisco

Number of Internet objects Number of theoretical connections (0.001%)

```
1 - 100 0 1,000 5 1,000,000 4,999,995,000 (Today) 10,000,000,000 499,999,995,000 (By 2020) 51,597,803,520 13,311,666,640,184,600
```

Connect all the things

An Internet Minute

The Last Mile is HARD

Conversations

M2M

M2H

Traditional Messaging MQTT, AMQP

WebSockets

Bidirectional Real Time Data Distribution

W3C Server Sent Events

Traditional Messaging

Pros

- Loosely coupled.
- All you can eat messaging patterns
- Familiar

Cons

- No data model. Slinging blobs
- Fast producer, slow consumer? Ouch.
- No data 'smarts'. A blob is a blob.

Invented yonks ago...

Before the InterWebs

For 'reliable' networks

For machine to machine

Remember DEC Message Queues?

- That basically. Vomit!

When fallacies were simple

- -The network is reliable
- -Latency is zero
- -Bandwidth is infinite
- -There is one administrator
- -Topology does not change
- -The network is secure
- -Transport cost is zero
- -The network is homogeneous

Then in 1992, this happened:

The phrase 'surfing the internet' was coined by Jean Poly.

First SMS sent

First base.

It grew, and it grew

Then in 2007, this happened:

The **god** phone:

Surfing died. Touching happened.

Second base unlocked.

Then in 2007, this happened:

So we took all the things and put them in the internet:

Cloud happened.

So we could touch all the things.

They grew and they grew like all the good things do.

Then in 2007, this happened:

And it grew and it grew.

So we scaled all the things

Big data is fundamentally about extracting value, understanding implications, gaining insight so we can learn and improve continuously.

It's nothing new.

But, problem: The bird, basically.

Stop.

- -The network is **not** reliable **nor** is it cost free.
- -Latency is **not** zero**nor** is it a democracy.
- -Bandwidth is **not** infinite **nor** predictable especially the last mile!
- -There is **not only** one administrator trust, relationships **are** key
- -Topology **does** change It should, however, converge eventually
- -The network is **not** secure **nor** is the data that flows through it
- -Transport cost is **not** zero **but** what you **don't do** is **free**
- -The network is **not** homogeneous **nor** is it **smart**

Look.

- -What and How are what geeks do.
- -Why gets you paid
- -Business Value and Trust dictate What and How
- Policies, Events and Content implements Business Value
- -Science basically. But think like a carpenter:
- -Measure twice. Cut once.

Listen.

- **Every** nuance comes with a set of tradeoffs.
- Choosing the right ones can be hard, but it pays off.
- Context, Environment are critical
- Break all the rules, one benchmark at a time.

Benchmark Driven Development

Action: Data Distribution

Messaging remixed around:

Relevance - Queue depth for conflatable data should be 0 or 1. No more

Responsiveness - Use HTTP/REST for things. Stream the little things

Timeliness - It's relative. M2M != M2H.

Context - Packed binary, deltas mostly, snapshot on subscribe.

Environment- Don't send 1M 1K events to a mobile phone with 0.5mbps.

Action. Virtualize Client Queues

Nuance: Client telemetry. Tradeoff: Durable subscriptions harder

Action. Add data caching

One hop closer to the edge ...

Action. Exploit data structure

Snapshot recovery. Deltas or Changes mostly. Conserves bandwidth

Action. Behaviors

Extensible. Nuance? Roll your own protocols. Tradeoff? 3rd party code in the engine :/

Action. Structural Conflation

Ensures only current + consistent data is distributed. Actively soaks up bloat. Extensible!

Action. Structural Conflation [EEP]

Replace

- Replace/Overwrite 'A1' with 'A2'
- 'Current data right now'
- Fast

- Merge A1, A2 under some operation.
 - Operation is pluggable
 - Tunable consistency
 - Performance f(operation)

Implement Erlang Client ©

```
main_loop(Pid,Count) ->
    receive
    {snapshot, Topic , _Headers , Body } -> io:format("Snapshot: ~s ~s~n", [ Topic , Body]);
    {delta, Topic , _Headers, Body } -> io:format("Delta: ~s ~s~n", [ Topic , Body]);
    {ping, Timestamp} -> io:format("Ping: ~w ~n", [ Timestamp ]);
    {topic_status, Topic, Status} -> io:format("Topic Status: ~s ~s~n", [ Topic, Status]);
    What -> io:format("Unexpected: ~w ~n", [What])
    after 10 -> ok
    end,
    main_loop(Pid,Count+1).
```

Example Diffusion Exlang Client

Backend to Basho's Lager logging – Stream log events for near real-time analysis ...

Performance is **not** a number

Benchmark Models

Throughput (Worst case)

- Ramp clients continuously
- 100 messages per second per client
- Payload: 125 .. 2000 bytes
- Message style vs with conflation

Latency (Best case)

- Really simple. 1 client
- Ping Pong. Measure RTT time.
- Payload: 125 .. 2000 bytes

Throughput. Non-conflated

- Cold start server
- Ramp 750 clients 'simultaneously' at 5 second intervals
- 5 minute benchmark duration
- Clients onboarded linearly until IO (here) or compute saturation occurs.
- What the 'server' sees

Throughput. Non-conflated

- What the 'client' sees
- At and beyond saturation of some resource?
- · Things break!
- New connections fail. Good.
- Long established connections ok.
- Recent connections timeout and client connections are dropped. Good.
- Diffusion handles smaller message sizes more gracefully
- Back-pressure 'waveform' can be tuned out. Or, you could use structural conflation!

Throughput. Replace-conflated

- Cold start server
- Ramp 750 clients 'simultaneously' at 5 second intervals
- 5 minute benchmark duration
- Clients onboarded linearly until IO (here) or compute saturation occurs.
- Takes longer to saturate than nonconflated case
- Handles more concurrent connections
- Again, 'server' view

Throughput. Replace-Conflated

- What the 'client' sees
- Once saturation occurs Diffusion adapts actively by degrading messages per second per client
- This is good. Soak up the peaks through fairer distribution of data.
- Handles spikes in number of connections, volume of data or saturation of other resources using a single load adaptive mechanism

Throughput. Stats

- Data / (Data + Overhead)?
 - 1.09 GB/Sec payload at saturation.
 - 10Ge offers theoretic of 1.25GB/Sec.
 - Ballpark 87.2% of traffic represents business data.
- Benefits?
 - Optimize for business value of distributed data.
 - Most real-world high-frequency real-time data is recoverable
 - Stock prices, Gaming odds
 - Don't use conflation for transactional data, natch!

Latency (Best case)

- Cold start server
- 1 solitary client
- 5 minute benchmark duration
- Measure ping-pong round trip time
- Results vary by network card make, model, OS and Diffusion tuning.

Latency. Round Trip Stats

- Sub-millisecond at the 99.99% percentile
- As low as 15 microseconds
- On average significantly sub 100 microseconds for small data

Latency. Single Hop Stats

- Sub 500
 microseconds at
 the 99.99%
 percentile
- As low as 8 microseconds
- On average significantly sub 50 microseconds for small data

Latency in perspective

- 2.4 us. A tuned benchmark in C with low latency 10Ge NIC, with kernel bypass, with FPGA acceleration
- 5.0 us. A basic java benchmark as good as it gets in java
- Diffusion is measurably 'moving to the left' release on release
- We've been actively tracking and continuously improving since 4.0

CEP, basically

What is eep.erl?

- Add aggregate functions and window operations to Erlang
- Separate context (window) from computation (aggregate fn)
- 4 window types: tumbling, sliding, periodic, monotonic
- Process oriented.
- Fast enough. ©

Aggregate Functions

```
-module(eep_aggregate).
-export([behaviour_info/1]).
behaviour_info(callbacks) ->
  [ { init, 0} , { accumulate, 2}, {compensate, 2}, {emit, 1} ];
behaviour_info(_) ->
  undefined.
```

What is an aggregate function?

- A function that computes values over events.
- The cost of calculations are ammortized per event
- Just follow the above recipe
- Example: Aggregate 2M events (equity prices), send to GPU on emit, receive 2M options put/call prices as a result.

Aggregate Function Example

```
%% aggregate behaviour callbacks.
-export([init/0]).
-export([accumulate/2]).
-export([compensate/2]).
-export([emit/1]).
init() ->
  0.
accumulate(State,X) ->
  case State >= X of true -> State; false -> X end.
compensate(State,X) ->
  case State >= X of true -> X; false -> State end.
emit(State) ->
  State.
```

Tumbling Windows

What is a tumbling window?

- Every N events, give me an average of the last N events
- Does not overlap windows
- 'Closing' a window, 'Emits' a result (the average)
- Closing a window, Opens a new window

Tumbling Windows

```
Eshell V5.9.3 (abort with ^G)
1> P = eep_window_tumbling:start(eep_stats_sum,4).
<0.34.0>
2> P ! {add_handler, eep_emit_trace, []}.
{add_handler,eep_emit_trace, []}
3> [ P ! {push, X} || X <- lists:seq(1,24)], ok.
Emit: 10
ok
Emit: 26
Emit: 42
Emit: 58
Emit: 74
Emit: 90
```

Sliding Windows - O(Long Story)

- Like tumbling, except can overlap. But O(N2), Keep N small.
- Every event opens a new window.
- After N events, every subsequent event emits a result.
- · Like all windows, cost of calculation amortized over events

Compensating Aggregates

Sliding Windows.

```
5> f(P).
ok
6> P = eep_window_sliding:start(eep_stats_sum,4).
<0.41.0>
7> P ! {add_handler, eep_emit_trace, []}.
{add_handler,eep_emit_trace,[]}
8> [ P ! {push, X} || X <- lists:seq(1,9)], ok.
Emit: 10
ok
Emit: 14
Emit: 18
Emit: 22
Emit: 26
Emit: 30
```

Periodic Windows

- Driven by 'wall clock time' in milliseconds
- Not monotonic, natch. Beware of NTP

Periodic Windows

```
main(_Args) ->
  P = eep_window_periodic:start(eep_stats_count,1000),
  P ! {add_handler, eep_emit_trace, []},
  P! tick,
  main_loop(P,1).
main_loop(Window,Count) ->
  %timer:sleep(100),
  Window ! {push, 1},
  Window! tick,
  io:format("Count: ~w~n", [Count]),
  main_loop(Window,Count+1).
```

Monotonic Windows

- Driven mad by 'wall clock time'? Need a logical clock?
- No worries. Provide your own clock! Eg. Vector clock

Monotonic Windows

```
main(_Args) ->
  P = eep_window_monotonic:start(eep_stats_count,eep_clock_count,1000),
  P ! {add_handler, eep_emit_trace, []},
  main_loop(P,1).

main_loop(Window,Count) ->
  Window ! {push, 1},
  Window ! tick,
  main_loop(Window,Count+1).
```

EEP looking forward?

- Migrate windows from simple processes to gen_server.
- Extract library (no process / message passing overhead).
- Consider NIFs for performance critical sections.
- Consider native aggregate functions.
- Consider alternative to gen_event for interfacing
- Streams / Pipes? Hey, shoot me, but I like Node.js Streams/Pipes.
- Add more functions.
- Add more languages
- Node.js EEP https://github.com/darach/eep-js
- React/PHP EEP https://github.com/ianbarber/eep-php

- Thank you for listening to, having me
- Le twitter: @darachennis
- EEP in Erlang / PHP / Node.js:

https://github.com/darach/eep-erl

- https://github.com/ianbarber/eep-php https://github.com/darach/eep-js
- Push Technology's Diffusion product now supports Erlang Clients too.
 [Alpha, ping me if interested, email below]

PROMO CODE: ENNI100

Questions?

