
ERLANG/OTP

presents

Francesco Cesarini

Francesco Cesarini

Erlang Solutions

@FrancescoC

francesco@erlang-solutions.com 
www.erlang-solutions.com

What Is

Scalability?

What Is (massive)
Concurrency?

What Is High
Availability?

What Is Fault
Tolerance?

What Is Distribution
Transparency?

YES,
PLEASE!

Do you need a distributed system? Do you
need a scalable system? Do you need a
reliable system? Do you need a fault-
tolerant system? Do you need a massively
concurrent system? Do you need a
distributed system? Do you need a scalable

system? Do you need a reliable system? Do
you need a fault-tolerant system? Do

TO THE
RESCUE

• Open source

• Concurrency-oriented

• Lightweight processes

• Asynchronous message passing

• Share-nothing model

• Process linking / monitoring

• Supervision trees and recovery
strategies

• Transparent distribution model

• Soft-real time

• Let-it-fail philosophy

• Hot-code upgrades

W
H

AT IS ERLAN
G

WELL, IN FACT YOU
NEED more.

ERLANG IS JUST

A Programming
Language.

YOU NEED Architecture
patterns.

YOU NEED Middleware.

YOU NEED Libraries.

YOU NEED Tools.

You need OTP.

What is Middleware?

M
ID

D
LEW

A
RE

Design
Patterns

Fault
Tolerance

Distribution

Upgrades

Packaging

What are Libraries?

LIBRA
RIES

Storage

O&M

Interfaces

Communicati

on

What Tools?

O
TP TO

O
LS

Development

Test

Frameworks

Release &

Deployment

Debugging &

Monitoring

PART OF THE ERLANG
DISTRIBUTION

OPEN SOURCE

OTP IS

O
TP

Servers

Finite State
Machines

Event
Handlers

Supervisors

Applications

Less Code

Less Bugs

More Solid
Code

More

Tested
Code More
Free Time

Let It Fail

convert(Day) ->!
 case Day of!
 monday -> 1;!
 tuesday -> 2;!
 wednesday -> 3;!
 thursday -> 4;!
 friday -> 5;!
 saturday -> 6;!
 sunday -> 7;!
 Other ->!
 {error, unknown_day}!
 end.!

Let It Fail

convert(Day) ->!
 case Day of!
 monday -> 1;!
 tuesday -> 2;!
 wednesday -> 3;!
 thursday -> 4;!
 friday -> 5;!
 saturday -> 6;!
 sunday -> 7;!

 end.!

Fail Safe!

Propagating Exit Signals

Exit Signals

PidA
 PidB

{'EXIT', PidA, Reason}!

PidC

{'EXIT', PidB, Reason}!

Trap Exit

Trapping an Exit Signal

PidA

{'EXIT', PidA, Reason}!

PidC

PidB

Supervisors

PidA

PidC

PidB

Supervisor

Workers

Application

Releases

Behaviours

Server

process

call(Name, Message) -> Name !
{request, self(), Message}, receive
{reply, Reply} -> Reply end.!

reply(Pid, Reply) ->
Pid ! {reply, Reply}.!

Client
 Server

{request, Pid, Message}!

{reply, Reply}!

Client
 Server

{request, Pid, Message}!

{reply, Reply}!

Server
2

{reply, Reply}!

call(Name, Msg) -> Ref = make_ref(),
Name ! {request, {Ref, self()}, Msg},
receive {reply, Ref, Reply} -> Reply end.reply
({Ref, Pid}, Reply) -> Pid ! {reply, Ref,
Reply}.!

{request, {Ref, self()}, Message}!

{reply, Ref, Reply}!

{reply, ???, Reply}!

PidA
 PidB

{request, {Ref, PidA}, Msg}!

call(Name, Msg) -> Ref = erlang:monitor
(process, Name), Name ! {request, {Ref, self
()}, Msg}, receive ! {reply, Ref, Reply} -
> ! erlang:demonitor(Ref), ! Reply;!
{'DOWN', Ref, process, _Name, _Reason} ->!
{error, no_proc} end.!

PidA
 PidB

{request, {Ref, PidA}, Msg}!

call(Name, Msg) -> Ref = erlang:monitor
(process, Name), Name ! {request, {Ref, self
()}, Msg}, receive ! {reply, Ref, Reply} -
> ! erlang:demonitor(Ref, [flush]), !
Reply; ! {'DOWN', Ref, process, _Name,
_Reason} ->! {error, no_proc} end.!

{reply, Ref, Reply}!

{'DOWN', Ref, process, PidB, Reason}!

BEH
A

VIO
U

RS

Timeouts

Deadlocks

tracing

Monitoring

Distribution

Automatic Takeover
and Failover

N1

{myApp, 2000, {n1@host, {n2@host, n3@host}]} !

N2 N3

Application 
Master

Application 
n1@host dies  Application Masters on

failover nodes

N2 N3

n2@host dies Application is restarted
on n2@host

{myApp, 2000, {n1@host, {n2@host, n3@host}]} !

N1 N3

n1@host comes
back up  

Application is restarted on
n3@host

{myApp, 2000, {n1@host, {n2@host, n3@host}]} !

N1 N3

N1 takes over N3

{myApp, 2000, {n1@host, {n2@host, n3@host}]} !

RELEASE STATEMENT
OF AIMS

“To scale the radical concurrency-oriented
programming paradigm to build reliable
general-purpose software, such as server-
based systems, on massively parallel machines
(10^5 cores).”!

LIMITATIONS ARE PRESENT AT
THREE LEVELS

• Push the responsibility for scalability from the
programmer to the vm

• Analyze performance and scalability

• Identify bottlenecks and prioritize changes and
extensions

• Tackle well-known scalability issues

• Ets tables (shared global data structure)

• Message passing, copying and frequently
communicating processes

VM
 LANGUAGE
 INFRASTRUCTURE

VM
 LANGUAGE
 INFRASTRUCTURE

• Two major issues

• Fully connected clusters

• Explicit process placement

• Scalable Distributed (SD) Erlang

• Nodes grouping

• Non-transitive connections

• Implicit process placement

• Part of the standard Erlang/OTP package

• New concepts introduced

• Locality, Affinity and Distance

• Middleware layer

• Set of Erlang Applications

• Create and manage clusters of (heterogeneous) erlang
nodes

• API to monitor and control erlang distributed systems

• Existing tracing/logging/debugging tools pluggable

• Broker layer between users and cloud providers

• Auto-scaling

VM
 LANGUAGE
 INFRASTRUCTURE

CCL
/sɪˈsɪlɪ/

... And Much
More

Conclusions

USE
ERLANG

Do you need a distributed system? Do you need a
scalable system? Do you need a reliable system?
Do you need a fault-tolerant system? Do you need
a massively concurrent system? Do you need a
distributed system? Do you need a scalable
system? Do you need a reliable system? Do you
need a fault-tolerant system?

Do you need a distributed system? Do you need a
scalable system? Do you need a reliable system?
Do you need a fault-tolerant system? Do you need
a massively

Do you need a distributed system? Do you
need a scalable system? Do you need a
reliable system? Do you need a fault-
tolerant system?

Doyou need a massively concurrent system?
Do you need a distributed system? Do you
need a scalable system?

Do you need a reliable system? Do you need
a fault-tolerant system? Do

distributed system? Do you need a scalable
system? Do you need a reliable system? Do
you need a fault-tolerant system? Do you

USE
ERLANG/OTP

@francescoC

Questions?

