Francesco Cesarini
Erlang Solutions

@FrancescoC
francesco@erlang-solutions.com
www.erlang-solutions.com

SOLUTIONS



SOLUTIONS






A Y

\\)

— - &

M
\fﬁt




What Is (massive)







What Is High







What Is Fault




\.Ws

Thereifixedit.com




What Is Distribution







Do you need a distributed system? Do you
need a scalable system? Do you need a
reliable system? Do you need a fault-
tolerant system? Do you need a massively
m? Do vyou need a
? Do you need a scalable

cCONQUT S
distrifute S
O VRN a E! them? Do
ceclla fa@lt-t syBtdm? 70

syst
you



| v

ERLANG

TO THE
RESCUE



e(Open source

e Concurrency-oriented

e ightweight processes

e Asynchronous message passing
eShare-nothing model

®Process linking / monitoring
eSupervision trees and recovery
strategies

e Transparent distribution model
eSoft-real time

o et-it-fail philosophy
eHot-code upgrades

ONVTdd SI LVHM



WELL, IN FACT YOU
NEED more.



ERLANG IS JUST
A Programming
Language.



YOU NEED Architecture

patterns.

YOU NEED Middleware.
YOU NEED Libraries.
YOU NEED Tools.



You need OTP.




What is Middleware?




Design
Patterns
Fault
Tolerance
Distribution
Upgrades
Packaging

JAVMI 1AddIIN



What are Libraries?




Storage

O&M
Interfaces
Communicati
on

:

SAIVyd



What Tools?




Development O
Test =
Frameworks "0
Release & =
Deployment O
Debugging & O

Monitoring U,



OPEN SOURCE

OTP IS

PART OF THE ERLANG
DISTRIBUTION




Less Code
Less Bugs
More Solid
Code
More
Tested
Code More
Free Time

Servers
Finite State
Machines
Event
Handlers
Supervisors
Applications



convert (Day) ->
case Day of

monday -> 1
tuesday > 2
wednesday -> 3;
thursday -> 4;
friday -> 5;
saturday -> 6;
sunday -> 7;
Other ->

{error, unknown day}
end.




convert (Day) ->
case Day of

monday -> 1
tuesday > 2
wednesday -> 3;
thursday -> 4;
friday -> 5;
saturday -> 6;
sunday -> 7

end.




Fail Safe!




Propagating Exit Signals
{'EXIT', PidA, Reason}

PidA e eV TS tera > PidB

{'EXIT', PidB, Reason}

PidC




Trapping an Exit Signal

PidB

—]
-
Q)

=
[Tl
X
=

PidC




Supervisors




stdlib




Behaviours




specific

generic Senver

behaviour & ‘

callback
module




{request, Pid, Message}

>
Client Server
‘ {reply, Reply} .

call (Name, Message) -> Name !
{request, self(), Message}, receive
{reply, Reply} -> Reply end.

reply(Pid, Reply) ->
Pid ! {reply, Reply}.




{request, {Ref, self()}, Message}
{request, Pid, Message}

>
Client ‘ {reply, Ref, Reply} .Server
{reply, Reply}

<
{reply, Rep;;:\\\\\\
{reply, ???, Reply} .Serzver

call (Name, Msg) ->

Name ! {request, { , self()}, Msg},

receive {reply, , Reply} -> Reply end.reply
({ , Pid}, Reply) -> Pid ! {reply, ’

Reply}.




{request, {Ref, PidA}, Msg}

PidA ‘ >

PidB

call (Name, Msg) ->

Name ! {request, {Ref, self
()}, Msg}, receive {reply, Ref, Reply} -
= Reply;




{'DOWN', Ref, process, PidB, Reason}
{request, {Ref, PidA}, Msg}

‘ {reply, Ref, Reply}
_—

PidA PidB

call (Name, Msg) -> Ref = erlang:monitor
(process, Name), Name ! {request, {Ref, self
()}, Msg}, receive {reply, Ref, Reply} -
> erlang:demonitor (Ref, ),
Reply; { ' DOWN', Ref, process, Name,

_Reason} -> {error, no proc} end.




Timeouts
Deadlocks
tracing
Monitoring
Distribution

SUNOIAVHIY



Automatic Takeover




{myApp, 2000, {nl@host, {n2@host, n3@host}]}

N2

©

AN

Application

Master nl@host dies

Application

N3

(@

/

Application Masters on

failover nodes




{myApp, 2000, {nl@host, {n2@host, n3@host}]}

N2 N3

©

Ty
/ n2@host dies

Application is restarted
on n2@host



{myApp, 2000, {nl@host, {n2@host, n3@host}]}

N1

©

Application is restarted on

nl@host comes @l

back up



{myApp, 2000, {nl@host, {n2@host, n3@host}]}

N1 takes over N3







WP4 Scalable Infrastructure

WP3 SD Erlang Language

S|00L SdM
SIIpN}S 9SED 9dM

WP2 Virtual Machine




VM

ePush the responsibility for scalability from the
programmer to the vm

e Analyze performance and scalability

e |dentify bottlenecks and prioritize changes and
extensions

eTackle well-known scalability issues
efts tables (shared global data structure)
e Message passing, copying and frequently
communicating processes



LANGUAGE

® WO major issues

eFully connected clusters
eExplicit process placement

eScalable Distributed (SD) Erlan

eNodes grouping

eNon-transitive connections
e|mplicit process placement
ePart of the standard Erlang/OTP package

e New concepts introduced :

e ocality, Affinity and Distance -

B



INFRASTRUCTURE

CCL/s1'stl1/

eMiddleware layer
eSet of Erlang Applications

eCreate and manage clusters of (heterogeneous) erlang
nodes

e APl to monitor and control erlang distributed systems
eExisting tracing/logging/debugging tools pluggable
eBroker layer between users and cloud providers

e Auto-scaling And Much
... AN Uuc
More



Conclusions




Do you need a distributed system? Do you need a
scalable system? Do you need a reliable system?
Do you need a fault-tolerant system? Do you need
a massively concurrent system? Do you need a

digtribgt S m? Do you need a scalable
sylitenl? @O0 YBU need a reliable system? Do you
ngd JMfaulg-tdl

Do you need a distributed system? Do you need a

erant system?
SC I t@n? DgRyoulke flable system?
D u d g faul le em?
a J G

Do you need



Do you need a distributed system? Do you
need a scalable system? Do you need a
reliable system? Do you need a fault-
tolerant system?

0 a massively concurrent system?
M%Ed a distributed system? Do you

need a scalable system?

ERLANG/IQTR. .. ...

a fault-tolerant system? Do

distributed system? Do you need a scalable
system? Do you need a reliable system? Do
vou heed a fault-tolerant system? Do vyou




Questions?

@francescoC




