
Web testing at Corporama

Nicolas Thauvin
<nicolas@corporama.com>

Corporama CTO
http://corporama.com

30 / 11 / 2012

Agenda

1. Why GUI tests / the needs

2. Initial version

3. Current version

4. Demo

5. Conclusion / what's next

Why GUI tests / The needs

- A lot of 'widgets'
- User specific
- External sources
- DB/CPU intensive
 (600k visits/month)
- A lot of Ajax

- Things behind the scene

 Features of our GUI tests system (version 1.Myriad)

- A GUI test = a set of actions in a browser, the automated way.

- We want to test Ajax, so we need to control browsers.

- We use Selenium and https://github.com/charpi/erl_selenium (old RC API, not

WebDriver).

 - An erlang module per feature to be tested. Automated detection with *_gui suffix

https://github.com/charpi/erl_selenium

 Features of our GUI tests system (version 1.Myriad)

 What gui_tests.sh "<tests to launch>" does:

1. Define a few variables for the tests (to be read with os:getenv/1) : Host, Port,

browser to be used...

2. Compile code, restart yaws test node

3. Start Selenium in a VNC instance or on display (Debug) using a custom profile

4. Fill database using our production import scripts

5. Create tests users (one per offer)

6. Start tests (sequencially) with subsystems (like fake SMTP server, mock_internet)

Intercept external calls : data:api/2

 * Intermediate layer between code and data (ie: external store)
 * eunit tests declare their own data_fun with expected clauses

api (http_request, {Method, URL, Headers, Body, Timeout, Options}) ->

...

{Host, Port, Path} =

 case application:get_env(www, http_proxy) of

 {ok, {Proxy_host, Proxy_port}} -> {Proxy_host, Proxy_port, URL};

 _ -> ...

 end,

lhttpc:request(Host, Port,).

We mock the Internet

mock_internet is a process that runs as a proxy and matches the longest URL prefix in
an ETS table -> we can pass the tests without an internet access

the *_gui:mocks/1 Callback :

mocks () ->

 [{"crm.zoho.com/crm", "<html><body>OK</body></html>"},

 {"crm.zoho.com/crm/WebToLeadForm##actionType=social_pro12345a",

 fun () ->

 someone ! got_zoho_request,

 mock:http_reply("../fxt/zoho_reply.html")

 end}].

GUI test sample

Sample from social_pro_gui.erl:

test_not_logged(Session) ->

 ok = gui_tests:logout(Session),

 ok = gui_tests:search(Session, "Apple"),

 Xpath = "//div[@id='social_pro']/div/b/text()",

 Text = "Tous les profils Viadeo et Linkedin"

 " de la société à filtrer et exporter",

 gui_tests:check_text(Session, Xpath, Text),

 Teaser_x = "//a[@id='social_pro-teaser']",

 {ok, none} = selenium:cmd(Session, click, [Teaser_x]),

 Teaser_png_x = "//img[@src='/images/social_pro_teaser.png']",

 {ok, none} = selenium:cmd(Session, waitForElementPresent, [Teaser_png_x]),

 ?assertEqual(1, gui_tests:close_dialog_boxes(Session)).

 What's wrong with version 1

- Selenium (old RC) is slow, as it relies on a JS interface.

- In some browsers, the JS itself is slow (Ajax in IE..., various initializations).

- Very long time to start a browser session

- Duration (50 tests): 20min.

- Incompatible with a reactive continuous integration system and a growing test set.

- Order matters. Tests pass when user A is used in test 1 then in test 2. Not test 2 then

test 1

- Things to optimize in the tests sequence

- Some random timeouts in Ajax calls. Use waitForElementPresent,

waitForTextPresent & al.

 Version 2

- Make it distributed (Erlang's way !)
A new callback function: index/0

- One user per test (or anymous).
- DB creation on GUI tests startup + automatic login at the beginning of test. Prevents
bad profile reutilisation
- selenium_pool to (re)allocate sessions (similar to Selenium Grid).
- selenium_pool can also be used during development in an erlang Shell.

index () ->

 [{test_coupon_from_freemium_then_renew, [{user, "freemium"}]},

 {test_error, [{user, anonymous}, apart]},

 {test_offer_after_trial, [{user, anonymous}]},

 {test_defered, [{user, "freemium"}, {search, "Apple"}]}].

 Version 2 : queues

Test queues : A single "apart" then $((`grep -c vendor_id /proc/cpuinfo`))" concurrent
processes
 * A browser instance per queue (one per visible processor)
 * Record test durations in a DETS table. Used for next run distribution order

Start
'Apart'

Spawns End

 Version 2 : debug

* Distributed tests often mean 'messy log files' or one log per test

* We use the messy one, tagged with the queue Pid (easier to spot interactions)

* When a test fails, it generates a screenshot of the browser view with the test name

as file name

* export Debug=true :

 - Runs browsers on current X server

 - Keep mock_internet running at the end

 Good enough ?

Latest duration: 9min
(including 164 GUI tests)

Conclusion / What's next

- Good speed up and catches major regressions

- On our staging server, GUI tests act as a load tester (while running eunits in

parallel)

- Selenium approach is ok for functional testing, but is not efficient to spot browser-

specific bugs

 * bugs are likely to be catched by JS Lint or similar

 * CSS / layout issues are very hard to detect (screenshot comparison tend to result

in false positives and easily misses real problems)

- We may release parts of our code on github... yet the system is built-in for

Corporama use

Merci !

Questions ?

