Experiments i O'TP-Comphant
Datatlow Programming

Introducing Erlang Services Platform (Erlang/SP)

San Francisco Erlang Factory, March 21, 2013 Jay Nelson Twitter: @duomark Email: [ay@duomark.com

Thursday, March 21, 13

mailto:jay@duomark.com
mailto:jay@duomark.com

Manycore Concurrency

* Erlang /OTP encourages server-style programming
* One process with a potentially large internal state
* Serialized mutations to the internal state
* No easy way to automatically break up a gen_"* process

* Modern CPUs will soon have 100, 1K or even 10K cores

* How can Erlang programmers adapt to this future?

Thursday, March 21, 13

Keeping Cores Busy

* (OS-Level virtualization (multiply your problem)

* One CPU appears to be 100s of machines

* Many tenants and applications run on the same hardware
* Single application concurrency (divide and conquer)

* Requires many fine-grained tasks

* Implies that existing state must be distributed to more processes

Thursday, March 21, 13

FKrlang/SP

OTP-compliant library
* Open source at https://github.com/duomark/erlangsp
* Can be included directly with rebar.config
* Undergoing active development and evolution
* Encourages the use of “services” over “servers”
* Service: set of co-ops implementing an independent subsystem

+ Co-op: tightly bound graph of cooperating processes

Thursday, March 21, 13

Example Services for Texting

* Presence - users, bots or services that are online

* Connection listener - accepts user client connections

* Message routing - delivers messages from one user to others

* Attachment management - stores and ids attachments (image, sound)
* Push notifications - message count badges sent to offline users

* User search - discover users of the texting application

Thursday, March 21, 13

Goals of Krlang/SP

* Simplify and encourage the creation of massive concurrency
* Automate the generation of process networks
* Map mutable state to a structural representation of all states
* Use data flow to stimulate the network maps

* Allow incremental integration with existing OTP code

* Provide tools for understanding high concurrency performance

Thursday, March 21, 13

Process Networks

* Collection of processes wired together along messaging lines
* Build a Directed Acyclic Graph (DAG) template
* Create a co-op with a task function process per graph node
* Each process knows only its downstream receivers
* Inject data to propagate through the computation network

* Glue networks together with a mixture of OTP and SP constructs

Thursday, March 21, 13

Networked State Representation

* Each path through a network is unique
* Each path equals state
* Arrival at a specific node implies the path taken
* Process at that node has implicit state knowledge
* The process network embodies all states reachable
* Tradeoff: mutable state vs. processes + messaging

* Adding latency, but increasing concurrency

Thursday, March 21, 13

Networked State (cont.)

Replacing a counter with a pipeline of processes

| | |

Notity subscriber

Thursday, March 21, 13

Networked State (cont.)

* Programming with Erlang/SP

* The art of disassembling and distributing state

* Selecting network patterns that describe the problem space
* Functional decomposition

* Choosing the smallest meaningful function granularity

* Mapping functions to separate processes

Thursday, March 21, 13

OTP-Comphance

* Processes which:
* respond to system messages (dbg, trace, etc)
* can be supervised (deal with ‘EXIT” messages properly)
* reply to reltool get_modules request
* Compatible with all OTP tools
* Can integrate freely with OTP constructs (e.g., gen_server, supervisor)

* Support software upgrade in the context of a larger OTP system

Thursday, March 21, 13

Fxample message loop code
‘erlangsp: coop_head_ctl_rcverl)

msg_loop({} = State, Root_Pid, Timeout, Debug_Opts) ->
receive

%% System messages for compatibility with OTP...
{"EXIT', _Parent, Reason} -> exit(Reason);

{system, From, System_Msg} ->
Sys_Args = {State, Root_Pid, Timeout, Debug_Opts},
handle_sys(Sys_Args, From, System_Msg);

{get_modules, From} ->
From ! {modules, [?MODULE]},
?MSG_LOOP_RECURSE;;

?CTL_MSG({1in1it_state, #coop_head_state{} = New_State}) ->
?MSG_LOOP_RECURSE(New_State)
end;

Thursday, March 21, 13

OTP-Comphiance (cont.)

* More details in my Vancouver 2012 Erlang Factory Lite talk

* Managing Processes without OTP (and how to make them OTP-
compliant)

* http:/ /www.erlang-factory.com /upload / presentations /674 /
OTPProcs.pdt

Thursday, March 21, 13

http://www.erlang-factory.com/upload/presentations/674/OTPProcs.pdf
http://www.erlang-factory.com/upload/presentations/674/OTPProcs.pdf
http://www.erlang-factory.com/upload/presentations/674/OTPProcs.pdf
http://www.erlang-factory.com/upload/presentations/674/OTPProcs.pdf

Implementation Details

1. Esp_service behaviour
2. Esp_tcp_service behaviour

3. Esp_epmd

Thursday, March 21, 13

Ksp_service Behaviour

* Erlang/SP library provided behaviour

Client module must implement
* new(Args, Receiver) -> esp_service() | {error, _}.
+* start(Service, Proplist) -> esp_service() | {error, _}.

+* stop(Service) -> esp_service().

Services don’t run on creation, until explicitly started

* A collection of services plus admin/control logic make a system

Thursday, March 21, 13

Ksp_service Behaviour (cont.)

* Built-in functions
* make_service(coop()) -> esp_service().
* link_service(esp_service()) -> ok.
* status(esp_service()) -> svc_state().
* act_on(esp_service(), Data) -> ok | {error, not_started}
+* suspend, suspend_for / resume, resume_after

+ set_overload / 1is_overloaded

Thursday, March 21, 13

Esp_tep_service Behaviour

* Generic service for accepting TCP connections (like ranch or swarm)
* Uses prim_inet:async_accept internally
* Implements esp_service interface using a fanout co-op graph
* Client module handles incoming data
* Client module can be changed after acceptor is launched
* Listen socket, plus acceptors are all linked

+ Client module can remove links on connect or data recv

Thursday, March 21, 13

Diagram of Esp_tep_service

create
= [isten
socke

broadcast

lient | 5 f
Client_Module:recv(..., Data)

Thursday, March 21, 13

Ksp_tep_service Behaviour (cont.)

* Fanout broadcast from socket listen to N acceptor children
* No downstream receivers from fanout
* Connection is kept in acceptor process, no tcp socket transfer
Client module is free to generate side effects on data recv
* On completion, acceptor process is removed from co-op

* Replacement is slab allocated for higher volume performance

Thursday, March 21, 13

Epmd daemon

* Epmd maintains connection registry
* List of node name, port for shared cookie Erlang nodes
* Part of base distribution, written in C

* TCP to local node when erlang VM starts

* Epmd accepts queries for active nodes

Thursday, March 21, 13

Diagram of Epmd

query

\4
clients

erl

Typical vs. Erlang/SP version

* Typical
TCP connection listener pool
* Ets table of connections
Central server for queries
* Erlang/SP style
* BEsp_tcp service (connection listener fanout)

* Query service (fanout of connected nodes)

Thursday, March 21, 13

Esp_epmd Service

Connection fanout is an esp_tcp_service
* Acceptor task for erl connection is to migrate to query fanout
* Acceptor task for other requests is reply and die

* Queries are routed to query service fanout
* Broadcast mode sends query to all live connections

* Each replies if query matches, ignores if not

Thursday, March 21, 13

Esp_epmd Query Reply

* Asynchronous distribution requires collection of results
* Newly spawned collector task listens for responses
* Replies must be sent to requestor within timeout
* Late to arrive messages find no process and are dropped

* After response, collector pid expires

Thursday, March 21, 13

(Query Collection

3) result

query

I 1) query service
@ l Q{broadcast

4) late reply
dropped

v

Thursday, March 21, 13

Erlang/S5P Contribution

* Trade internal state (ets table) for process graph

* Database of connections is a fanout graph of processes

* Query occurs in parallel naturally

* Entirely eliminates need for mutable state update on connect
* Erlang /SP provides common library patterns

* Reduction in code to implement epmd logic

Full OTP tool set can be used on live epmd connection processes

Thursday, March 21, 13

Conclusion

* Erlang/SP enables higher-level concurrency patterns
* HEschews state-based, single-server model
* Supports graph-oriented concurrent algorithm structures
* Allows integration with existing OTP structures
* Supports migration of systems to manycore architectures

* v0.1.0 with esp_service behaviours will be announced soon

Thursday, March 21, 13

