
San Francisco Erlang Factory, March 21, 2013 Jay Nelson Twitter: @duomark Email: Jay@duomark.com

Experiments in OTP-Compliant
Dataflow Programming
Introducing Erlang Services Platform (Erlang/SP)

Thursday, March 21, 13

mailto:jay@duomark.com
mailto:jay@duomark.com

Manycore Concurrency

✤ Erlang/OTP encourages server-style programming

✤ One process with a potentially large internal state

✤ Serialized mutations to the internal state

✤ No easy way to automatically break up a gen_* process

✤ Modern CPUs will soon have 100, 1K or even 10K cores

✤ How can Erlang programmers adapt to this future?

Thursday, March 21, 13

Keeping Cores Busy

✤ OS-Level virtualization (multiply your problem)

✤ One CPU appears to be 100s of machines

✤ Many tenants and applications run on the same hardware

✤ Single application concurrency (divide and conquer)

✤ Requires many fine-grained tasks

✤ Implies that existing state must be distributed to more processes

Thursday, March 21, 13

Erlang/SP

✤ OTP-compliant library

✤ Open source at https://github.com/duomark/erlangsp

✤ Can be included directly with rebar.config

✤ Undergoing active development and evolution

✤ Encourages the use of “services” over “servers”

✤ Service: set of co-ops implementing an independent subsystem

✤ Co-op: tightly bound graph of cooperating processes

Thursday, March 21, 13

Example Services for Texting

✤ Presence - users, bots or services that are online

✤ Connection listener - accepts user client connections

✤ Message routing - delivers messages from one user to others

✤ Attachment management - stores and ids attachments (image, sound)

✤ Push notifications - message count badges sent to offline users

✤ User search - discover users of the texting application

Thursday, March 21, 13

Goals of Erlang/SP

✤ Simplify and encourage the creation of massive concurrency

✤ Automate the generation of process networks

✤ Map mutable state to a structural representation of all states

✤ Use data flow to stimulate the network maps

✤ Allow incremental integration with existing OTP code

✤ Provide tools for understanding high concurrency performance

Thursday, March 21, 13

Process Networks

✤ Collection of processes wired together along messaging lines

✤ Build a Directed Acyclic Graph (DAG) template

✤ Create a co-op with a task function process per graph node

✤ Each process knows only its downstream receivers

✤ Inject data to propagate through the computation network

✤ Glue networks together with a mixture of OTP and SP constructs

Thursday, March 21, 13

Networked State Representation

✤ Each path through a network is unique

✤ Each path equals state

✤ Arrival at a specific node implies the path taken

✤ Process at that node has implicit state knowledge

✤ The process network embodies all states reachable

✤ Tradeoff: mutable state vs. processes + messaging

✤ Adding latency, but increasing concurrency

Thursday, March 21, 13

Networked State (cont.)

Try 1 Try 2 Try 3

Notify subscriber

Msg Fail

Replacing a counter with a pipeline of processes

Thursday, March 21, 13

Networked State (cont.)

✤ Programming with Erlang/SP

✤ The art of disassembling and distributing state

✤ Selecting network patterns that describe the problem space

✤ Functional decomposition

✤ Choosing the smallest meaningful function granularity

✤ Mapping functions to separate processes

Thursday, March 21, 13

OTP-Compliance

✤ Processes which:

✤ respond to system messages (dbg, trace, etc)

✤ can be supervised (deal with ‘EXIT’ messages properly)

✤ reply to reltool get_modules request

✤ Compatible with all OTP tools

✤ Can integrate freely with OTP constructs (e.g., gen_server, supervisor)

✤ Support software upgrade in the context of a larger OTP system

Thursday, March 21, 13

Example message loop code
(erlangsp: coop_head_ctl_rcv.erl)
msg_loop({}	 =	 State,	 Root_Pid,	 Timeout,	 Debug_Opts)	 ->

	 	 	 	 receive

	 	 	 	 	 	 	 	 %%	 System	 messages	 for	 compatibility	 with	 OTP...
	 	 	 	 	 	 	 	 {'EXIT',	 _Parent,	 Reason}	 	 ->	 exit(Reason);

	 	 	 	 	 	 	 	 {system,	 From,	 System_Msg}	 ->
	 	 	 	 	 	 	 	 	 	 	 	 Sys_Args	 =	 {State,	 Root_Pid,	 Timeout,	 Debug_Opts},
	 	 	 	 	 	 	 	 	 	 	 	 handle_sys(Sys_Args,	 From,	 System_Msg);

	 	 	 	 	 	 	 	 {get_modules,	 From}	 	 	 	 	 	 	 	 ->
	 	 	 	 	 	 	 	 	 	 	 	 From	 !	 {modules,	 [?MODULE]},
	 	 	 	 	 	 	 	 	 	 	 	 ?MSG_LOOP_RECURSE;

	 	 	 	 	 	 	 	 ?CTL_MSG({init_state,	 #coop_head_state{}	 =	 New_State})	 ->
	 	 	 	 	 	 	 	 	 	 	 	 ?MSG_LOOP_RECURSE(New_State)
	 	 	 	 end;

Thursday, March 21, 13

OTP-Compliance (cont.)

✤ More details in my Vancouver 2012 Erlang Factory Lite talk

✤ Managing Processes without OTP (and how to make them OTP-
compliant)

✤ http://www.erlang-factory.com/upload/presentations/674/
OTPProcs.pdf

Thursday, March 21, 13

http://www.erlang-factory.com/upload/presentations/674/OTPProcs.pdf
http://www.erlang-factory.com/upload/presentations/674/OTPProcs.pdf
http://www.erlang-factory.com/upload/presentations/674/OTPProcs.pdf
http://www.erlang-factory.com/upload/presentations/674/OTPProcs.pdf

Implementation Details

1. Esp_service behaviour
2. Esp_tcp_service behaviour
3. Esp_epmd

Thursday, March 21, 13

Esp_service Behaviour

✤ Erlang/SP library provided behaviour

✤ Client module must implement

✤ new(Args,	 Receiver)	 ->	 esp_service()	 |	 {error,	 _}.

✤ start(Service,	 Proplist)	 ->	 esp_service()	 |	 {error,	 _}.

✤ stop(Service)	 ->	 esp_service().

✤ Services don’t run on creation, until explicitly started

✤ A collection of services plus admin/control logic make a system

Thursday, March 21, 13

Esp_service Behaviour (cont.)

✤ Built-in functions

✤ make_service(coop())	 ->	 esp_service().

✤ link_service(esp_service())	 ->	 ok.

✤ status(esp_service())	 ->	 svc_state().

✤ act_on(esp_service(),	 Data)	 ->	 ok	 |	 {error,	 not_started}

✤ suspend,	 suspend_for	 /	 resume,	 resume_after

✤ set_overload	 /	 is_overloaded

Thursday, March 21, 13

Esp_tcp_service Behaviour

✤ Generic service for accepting TCP connections (like ranch or swarm)

✤ Uses prim_inet:async_accept internally

✤ Implements esp_service interface using a fanout co-op graph

✤ Client module handles incoming data

✤ Client module can be changed after acceptor is launched

✤ Listen socket, plus acceptors are all linked

✤ Client module can remove links on connect or data recv

Thursday, March 21, 13

Diagram of Esp_tcp_service

Listen

broadcast

 Client_Module:recv(..., Data)

Accept Accept Accept

Client Client

Start create
socket

Thursday, March 21, 13

Esp_tcp_service Behaviour (cont.)

✤ Fanout broadcast from socket listen to N acceptor children

✤ No downstream receivers from fanout

✤ Connection is kept in acceptor process, no tcp socket transfer

✤ Client module is free to generate side effects on data recv

✤ On completion, acceptor process is removed from co-op

✤ Replacement is slab allocated for higher volume performance

Thursday, March 21, 13

Epmd daemon

✤ Epmd maintains connection registry

✤ List of node name, port for shared cookie Erlang nodes

✤ Part of base distribution, written in C

✤ TCP to local node when erlang VM starts

✤ Epmd accepts queries for active nodes

Thursday, March 21, 13

Diagram of Epmd

epmd

erl

erl

erl

registry

clients

connect

query

Thursday, March 21, 13

Typical vs. Erlang/SP version

✤ Typical

✤ TCP connection listener pool

✤ Ets table of connections

✤ Central server for queries

✤ Erlang/SP style

✤ Esp_tcp service (connection listener fanout)

✤ Query service (fanout of connected nodes)

Thursday, March 21, 13

Esp_epmd Service

✤ Connection fanout is an esp_tcp_service

✤ Acceptor task for erl connection is to migrate to query fanout

✤ Acceptor task for other requests is reply and die

✤ Queries are routed to query service fanout

✤ Broadcast mode sends query to all live connections

✤ Each replies if query matches, ignores if not

Thursday, March 21, 13

Esp_epmd Query Reply

✤ Asynchronous distribution requires collection of results

✤ Newly spawned collector task listens for responses

✤ Replies must be sent to requestor within timeout

✤ Late to arrive messages find no process and are dropped

✤ After response, collector pid expires

Thursday, March 21, 13

Query Collection

query
service

collector

erl1 erl2 erl3

2) broadcast

4) late reply
dropped

3) result

1) query

Thursday, March 21, 13

Erlang/SP Contribution

✤ Trade internal state (ets table) for process graph

✤ Database of connections is a fanout graph of processes

✤ Query occurs in parallel naturally

✤ Entirely eliminates need for mutable state update on connect

✤ Erlang/SP provides common library patterns

✤ Reduction in code to implement epmd logic

✤ Full OTP tool set can be used on live epmd connection processes

Thursday, March 21, 13

Conclusion

✤ Erlang/SP enables higher-level concurrency patterns

✤ Eschews state-based, single-server model

✤ Supports graph-oriented concurrent algorithm structures

✤ Allows integration with existing OTP structures

✤ Supports migration of systems to manycore architectures

✤ v0.1.0 with esp_service behaviours will be announced soon

Thursday, March 21, 13

