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Manycore Concurrency

✤ Erlang/OTP encourages server-style programming

✤ One process with a potentially large internal state

✤ Serialized mutations to the internal state

✤ No easy way to automatically break up a gen_* process

✤ Modern CPUs will soon have 100, 1K or even 10K cores

✤ How can Erlang programmers adapt to this future?
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Keeping Cores Busy

✤ OS-Level virtualization (multiply your problem)

✤ One CPU appears to be 100s of machines

✤ Many tenants and applications run on the same hardware

✤ Single application concurrency (divide and conquer)

✤ Requires many fine-grained tasks

✤ Implies that existing state must be distributed to more processes
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Erlang/SP

✤ OTP-compliant library

✤ Open source at https://github.com/duomark/erlangsp

✤ Can be included directly with rebar.config

✤ Undergoing active development and evolution

✤ Encourages the use of “services” over “servers”

✤ Service: set of co-ops implementing an independent subsystem

✤ Co-op: tightly bound graph of cooperating processes
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Example Services for Texting

✤ Presence - users, bots or services that are online

✤ Connection listener - accepts user client connections

✤ Message routing - delivers messages from one user to others

✤ Attachment management - stores and ids attachments (image, sound)

✤ Push notifications - message count badges sent to offline users

✤ User search - discover users of the texting application
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Goals of Erlang/SP

✤ Simplify and encourage the creation of massive concurrency

✤ Automate the generation of process networks

✤ Map mutable state to a structural representation of all states

✤ Use data flow to stimulate the network maps

✤ Allow incremental integration with existing OTP code

✤ Provide tools for understanding high concurrency performance
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Process Networks

✤ Collection of processes wired together along messaging lines

✤ Build a Directed Acyclic Graph (DAG) template

✤ Create a co-op with a task function process per graph node

✤ Each process knows only its downstream receivers

✤ Inject data to propagate through the computation network

✤ Glue networks together with a mixture of OTP and SP constructs
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Networked State Representation

✤ Each path through a network is unique

✤ Each path equals state

✤ Arrival at a specific node implies the path taken

✤ Process at that node has implicit state knowledge

✤ The process network embodies all states reachable

✤ Tradeoff: mutable state vs. processes + messaging

✤ Adding latency, but increasing concurrency
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Networked State (cont.)

Try 1 Try 2 Try 3

Notify subscriber

Msg Fail

Replacing a counter with a pipeline of processes
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Networked State (cont.)

✤ Programming with Erlang/SP

✤ The art of disassembling and distributing state

✤ Selecting network patterns that describe the problem space

✤ Functional decomposition

✤ Choosing the smallest meaningful function granularity

✤ Mapping functions to separate processes
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OTP-Compliance

✤ Processes which:

✤ respond to system messages (dbg, trace, etc)

✤ can be supervised (deal with ‘EXIT’ messages properly)

✤ reply to reltool get_modules request

✤ Compatible with all OTP tools

✤ Can integrate freely with OTP constructs (e.g., gen_server, supervisor)

✤ Support software upgrade in the context of a larger OTP system
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Example message loop code
(erlangsp: coop_head_ctl_rcv.erl)
msg_loop({}	 =	 State,	 Root_Pid,	 Timeout,	 Debug_Opts)	 ->

	 	 	 	 receive

	 	 	 	 	 	 	 	 %%	 System	 messages	 for	 compatibility	 with	 OTP...
	 	 	 	 	 	 	 	 {'EXIT',	 _Parent,	 Reason}	 	 ->	 exit(Reason);

	 	 	 	 	 	 	 	 {system,	 From,	 System_Msg}	 ->
	 	 	 	 	 	 	 	 	 	 	 	 Sys_Args	 =	 {State,	 Root_Pid,	 Timeout,	 Debug_Opts},
	 	 	 	 	 	 	 	 	 	 	 	 handle_sys(Sys_Args,	 From,	 System_Msg);

	 	 	 	 	 	 	 	 {get_modules,	 From}	 	 	 	 	 	 	 	 ->
	 	 	 	 	 	 	 	 	 	 	 	 From	 !	 {modules,	 [?MODULE]},
	 	 	 	 	 	 	 	 	 	 	 	 ?MSG_LOOP_RECURSE;

	 	 	 	 	 	 	 	 ?CTL_MSG({init_state,	 #coop_head_state{}	 =	 New_State})	 ->
	 	 	 	 	 	 	 	 	 	 	 	 ?MSG_LOOP_RECURSE(New_State)
	 	 	 	 end;
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OTP-Compliance (cont.)

✤ More details in my Vancouver 2012 Erlang Factory Lite talk

✤ Managing Processes without OTP (and how to make them OTP-
compliant)

✤ http://www.erlang-factory.com/upload/presentations/674/
OTPProcs.pdf
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Implementation Details

1. Esp_service behaviour
2. Esp_tcp_service behaviour
3. Esp_epmd
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Esp_service Behaviour

✤ Erlang/SP library provided behaviour

✤ Client module must implement

✤ new(Args,	 Receiver)	 ->	 esp_service()	 |	 {error,	 _}.

✤ start(Service,	 Proplist)	 ->	 esp_service()	 |	 {error,	 _}.

✤ stop(Service)	 ->	 esp_service().

✤ Services don’t run on creation, until explicitly started

✤ A collection of services plus admin/control logic make a system
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Esp_service Behaviour (cont.)

✤ Built-in functions

✤ make_service(coop())	 ->	 esp_service().

✤ link_service(esp_service())	 ->	 ok.

✤ status(esp_service())	 ->	 svc_state().

✤ act_on(esp_service(),	 Data)	 ->	 ok	 |	 {error,	 not_started}

✤ suspend,	 suspend_for	 /	 resume,	 resume_after

✤ set_overload	 /	 is_overloaded
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Esp_tcp_service Behaviour

✤ Generic service for accepting TCP connections (like ranch or swarm)

✤ Uses prim_inet:async_accept internally

✤ Implements esp_service interface using a fanout co-op graph

✤ Client module handles incoming data

✤ Client module can be changed after acceptor is launched

✤ Listen socket, plus acceptors are all linked

✤ Client module can remove links on connect or data recv
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Diagram of Esp_tcp_service
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Esp_tcp_service Behaviour (cont.)

✤ Fanout broadcast from socket listen to N acceptor children

✤ No downstream receivers from fanout

✤ Connection is kept in acceptor process, no tcp socket transfer

✤ Client module is free to generate side effects on data recv

✤ On completion, acceptor process is removed from co-op

✤ Replacement is slab allocated for higher volume performance
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Epmd daemon

✤ Epmd maintains connection registry

✤ List of node name, port for shared cookie Erlang nodes

✤ Part of base distribution, written in C

✤ TCP to local node when erlang VM starts

✤ Epmd accepts queries for active nodes
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Diagram of Epmd
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Typical vs. Erlang/SP version

✤ Typical

✤ TCP connection listener pool

✤ Ets table of connections

✤ Central server for queries

✤ Erlang/SP style

✤ Esp_tcp service (connection listener fanout)

✤ Query service (fanout of connected nodes)
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Esp_epmd Service

✤ Connection fanout is an esp_tcp_service

✤ Acceptor task for erl connection is to migrate to query fanout

✤ Acceptor task for other requests is reply and die

✤ Queries are routed to query service fanout

✤ Broadcast mode sends query to all live connections

✤ Each replies if query matches, ignores if not
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Esp_epmd Query Reply

✤ Asynchronous distribution requires collection of results

✤ Newly spawned collector task listens for responses

✤ Replies must be sent to requestor within timeout

✤ Late to arrive messages find no process and are dropped

✤ After response, collector pid expires
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Query Collection
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Erlang/SP Contribution

✤ Trade internal state (ets table) for process graph

✤ Database of connections is a fanout graph of processes

✤ Query occurs in parallel naturally

✤ Entirely eliminates need for mutable state update on connect

✤ Erlang/SP provides common library patterns

✤ Reduction in code to implement epmd logic

✤ Full OTP tool set can be used on live epmd connection processes

Thursday, March 21, 13



Conclusion

✤ Erlang/SP enables higher-level concurrency patterns

✤ Eschews state-based, single-server model

✤ Supports graph-oriented concurrent algorithm structures

✤ Allows integration with existing OTP structures

✤ Supports migration of systems to manycore architectures

✤ v0.1.0 with esp_service behaviours will be announced soon
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