
Lager: logging with
confidence

March 22nd 2013

Andrew Thompson
andrew@basho.com

github.com/Vagabond

Monday, 8 April 2013

mailto:andrew@basho.com
mailto:andrew@basho.com

But logging is
boring, right?

•That doesn’t mean its not important

•When you do need it, you want it to
work

•Logs can be customer facing

•Needs good performance and
behaviour

Monday, 8 April 2013

A look at
error_logger

•3(?) log levels;info, warning, error.

•Warnings default to errors (see +W)

•gen_event based, async notify()

•Size rotation by log_mf_h.erl

Monday, 8 April 2013

Some problems

•No backpressure, sender doesn’t
wait for message to be acked

•No runtime configuration at all

•Format string and arguments are
passed to the gen_event and then
formatted once per handler -
expensive

Monday, 8 April 2013

Error logger file
rotation

Consider this directory listing:
-rw-r--r-- 1 andrew users 1048500 Mar 15 17:19 1
-rw-r--r-- 1 andrew users 1048500 Mar 15 17:19 2
-rw-r--r-- 1 andrew users 1048500 Mar 15 17:20 3
-rw-r--r-- 1 andrew users 1048500 Mar 15 17:20 4
-rw-r--r-- 1 andrew users 565100 Mar 15 17:20 5
-rw-r--r-- 1 andrew users 1 Mar 15 17:20 index

How do you find the latest file?
Cat the index file: ^E
You have to look at the filesize/date or
read the index file as decimal, not ASCII.
Hugely confusing for customers.

Monday, 8 April 2013

More rotation fun
•Disk is filling up, rotation size is

large (like 10mb)

•“Just delete the logfile”

•No check for deletion/move of
logfile, will keep writing to deleted
file

•Erlang doesn’t support kill -HUP

Monday, 8 April 2013

But wait, there’s
more

•OTP errors include the total process
state, as well as the last message
received

• If you’re transcoding a 10mb video
in a process’ state, error_logger will
print the entire thing for you

•But, it’ll probably OOM first

Monday, 8 April 2013

Result

•error_logger, through no fault of
your own, will OOM your node in
production

•Google and erlang-questions are
littered with horror stories

•This is unacceptable for most
deployments

Monday, 8 April 2013

We can do better

Monday, 8 April 2013

Riak_err

•Written by Basho hacker Scott Lystig
Fritchie in 2010

•Replaces error_logger handlers with
a custom one that truncates large
input

Monday, 8 April 2013

However...

•Uses erts_debug:flat_size to detect
large terms, doesn’t work for off-
heap binaries

•The formatting it does for oversize
messages is hard to read

•Still no solution for large mailboxes

Monday, 8 April 2013

Meanwhile, in 2009

• I was writing callcenters in upstate
NY (Ruby and then Erlang)

•Wrote logging libraries for both

•Erlang logger tried to handle OOM
similarly to riak_err

Monday, 8 April 2013

Cpxlog
•Async gen_event

•error_logger handler that uses
trunc_io to limit size

•Added a crazy regexp based format
string tokenizer

•File backend supported multiple
files with different log levels

Monday, 8 April 2013

Cpxlog continued

•Levels could be changed at runtime

•Also had a syslog backend, which I
wrote a port driver for

•Could enable debug messages per-
module

Monday, 8 April 2013

But...
•Was under an obnoxious license

(CPAL, ugh!)

•Changed jobs and went to write
jQuery (javascript, ugh!!)

•Got hired at Basho. Support
complained about logs, a lot.
Showed them cpxlog, they told me
to write them a logger for Riak.

Monday, 8 April 2013

And so, Lager was
born

Builds on the experience of cpxlog and
riak_err, but also learns from their mistakes

Monday, 8 April 2013

Philosophies

•Logging should NEVER crash the
node

•Logs should be customer readable

•Rotation should be easy

•Log levels should be granular and
flexible

Monday, 8 April 2013

Why reinvent the
wheel?

•Hard to patch the ‘philosophy’ of a
library

•Nothing else seemed to share my
ideals of logging

•Guaranteed path to internet fame
and fortune

Monday, 8 April 2013

Lager features
•Forked trunc_io and io_lib (EQC!)

•Rewrites common OTP errors into
‘english’

•Uses the 7 syslog levels,
configurable at runtime

•Parse-transform that captures
callsite metadata

Monday, 8 April 2013

Bonus features
•Ability to ‘route’ log messages

• Internal size and date rotation

•Supports external rotation

•File, console & syslog backends

•Lots of community provided
backends; SMTP, AMQP, Loggly,
CouchDB(!), MongoDB(!!), etc.

Monday, 8 April 2013

Example of ‘english’
messages

From:
=ERROR REPORT==== 17-Mar-2013::22:47:18 ===
** Generic server crash terminating
** Last message in was badmatch
** When Server state == {}
** Reason for termination ==
** {{badmatch,{}},
 [{crash,handle_call,3,[{file,"test/crash.erl"},{line,55}]},
 {gen_server,handle_msg,5,[{file,"gen_server.erl"},{line,588}]},
 {proc_lib,init_p_do_apply,3,[{file,"proc_lib.erl"},{line,227}]}]}

To:
22:47:38.934 [error] gen_server crash terminated with reason: no match of right
hand value {} in crash:handle_call/3 line 55

'Full' message is also written to crash.log

Monday, 8 April 2013

Tracing example
Send all debug messages from
'flux_capacitor' module to the console,
regardless of the minimum loglevel:

lager:trace_console([{module, flux_capacitor}], debug).

Or, trace to a brand new file:
lager:trace_file("/tmp/flux_capacitor_debug", [{module, flux_capacitor}], debug).

You can also trace to an existing lager file
backend and trace on any custom
metadata you annotate your messages
with.

Monday, 8 April 2013

A new challenger
appears

•error_logger, obviously

• log4erl, inspired by log4j

•alogger, from the first spawnfest

•elog, from Inaka

•elogger, by BlueTail(via jungerl)

• fast_log, by Opscode

Monday, 8 April 2013

log4erl
•Sync gen_event, error_logger

handler

•Uses log4j appender/formatter
design

•Console, file, smtp, xml, syslog
backends, and more

•5 log levels, change on the fly via
recompilation

Monday, 8 April 2013

Alogger
•Async gen_server with handler

modules, error_logger handler

•File, console, syslog and scribe

•Handler modules can be sync or
async (eg. file)

• ‘flows’, inspired lager ‘traces’

•Recompiles to change config

Monday, 8 April 2013

fast_log

•Async gen_event, no error_logger

•Only backend is sync disk_log

•Has overload protection, won’t send
to gen_event if mailbox full

•Not documented, but code is nice
and readable

Monday, 8 April 2013

elog
•Registered process per-loglevel

•Async logging

•Backends are per-loglevel(?) also
with a default one(?)

•Had a hard time configuring it

•Uses riak_err, but not for truncating
output(?)

Monday, 8 April 2013

elogger

•disk_log backend for error_logger

•Uses undocumented disk_log APIs

•disk_log:do_sync() per message

•Not a real OTP app, reads config
from current application
(infuriating!)

Monday, 8 April 2013

Vagabond/logbench
on GitHub

•Logging benchmark framework

•Supports all mentioned loggers,
plus a fork of error_logger that runs
in sync mode

•Can generate different sizes of
messages

•Number of workers is configurable

Monday, 8 April 2013

Methodology
•3 phases of benchmark, setup, run

and finish

•Finish waits for all log messages to
actually be processed

•Results are in operations/second,
including finishing time

•3 runs, median value selected

Monday, 8 April 2013

Other notes
• I disabled the large mailbox check

in fast_log, so it’d actually log the
same amount of messages as the
others

•alogger uses async all the way
down, to ensure that the logfiles are
actually written, finish step calls
disk_log:sync()

Monday, 8 April 2013

10,000 simple, 1 worker

op
s/
se
c

Monday, 8 April 2013

10,000 small, 1 worker

op
s/
se
c

Monday, 8 April 2013

Conclusions

•Alogger’s completely async pipeline
is fast

•Large mailboxes are bad, compare
error_logger to sync_error_logger

•Lager’s constant rotation checking
comes at a price

Monday, 8 April 2013

More conclusions

•elogger’s constant syncs are
expensive

•Not sure why elog does so badly

Monday, 8 April 2013

10,000 large, 1 worker

op
s/
se
c

Monday, 8 April 2013

Conclusions

•Most loggers can’t handle these
large messages (~80kb), log 10s of
messages/sec

•elogger has protection against large
binaries

• If a string is used, things get even
worse

Monday, 8 April 2013

10,000 simple,4 workers

op
s/
se
c

Monday, 8 April 2013

10,000 small,4 workers

op
s/
se
c

Monday, 8 April 2013

Conclusions

•Alogger wins big here because it is
completely async and it does the
formatting in the calling process -
very parallel

Monday, 8 April 2013

10,000 large,4 workers

op
s/
se
c

Monday, 8 April 2013

Crash and burn,
again

•alogger and fast_log OOMed, and
we were logging off-heap binaries

• fast_log even OOMed before I
disabled the large mailbox check

•Lager’s performance is about 3x the
single worker test

•elogger manages to hold out

Monday, 8 April 2013

Lager 2.0.0
RC1 tagged today.

Monday, 8 April 2013

New Features
•Metadata is passed to backends*

•Mochiglobal->ETS for config

•Syslog comparison flags: <info, !
=warning, etc

•Webmachine/Cowboy error
messages

•Application and pdict in metadata

Monday, 8 April 2013

Record printing
lager:info("My state is ~p", [lager:pr(State, ?MODULE)]).

Prints
00:16:37.888 [info] My state is #state{lions=[simba],tigers=
[tigger],bears=[winnie,yogi],oh_my=true}

Works by spotting records at compile
time in the parse transform and storing
record info in the module's attributes.
As long as you know where the record
came from, and that module was
compiled with lager, you can print it.

Monday, 8 April 2013

Console colors, needs R16 -
thanks DeadZen

op
s/
se
c

Monday, 8 April 2013

Performance by version

op
s/
se
c

Monday, 8 April 2013

But how?

•Reduce paranoid external checking
for file rotation/deletion to once a
second, by default

•Make sync/async messaging
adaptive based on mailbox size

Monday, 8 April 2013

Chart it again, Sam

Monday, 8 April 2013

10,000 small, 1 worker

op
s/
se
c

Monday, 8 April 2013

10,000 simple, 1 worker

op
s/
se
c

Monday, 8 April 2013

10,000 large, 1 worker

op
s/
se
c

Monday, 8 April 2013

10,000 simple,4 workers

op
s/
se
c

Monday, 8 April 2013

10,000 small,4 workers

op
s/
se
c

Monday, 8 April 2013

10,000 large,4 workers

op
s/
se
c

Monday, 8 April 2013

But, error_logger is
still async

•As long as you’re using lager, those
messages can’t crash your node

•But, OTP errors can still go crazy
and crash your node

•This is still a big problem

Monday, 8 April 2013

Cascading-failures

•Written by Fred Hebert, modeled on
real world failures

•github.com/ferd/cascading-failures

•Starts a bunch of workers that
reference an ETS table, then kills the
table owner, mayhem ensues

Monday, 8 April 2013

15 minute run, mem graph

op
s/
se
c

Monday, 8 April 2013

How
•Lager 2.0 has optional high water

mark in error_logger handler

•Once hit, no more messages that
second will be logged, it will try to
discard them instead

•We do drop messages, but in these
cases the messages are often the
same

Monday, 8 April 2013

But...

•Still can’t prevent large messages
being sent to error_logger

•Use format_status/2 callback for
OTP

•When sending large messages, try
to use binaries

Monday, 8 April 2013

Lager in production

•Riak since 1.0

•Zotonic since 0.8.0

•AdGear

•Lots more, not sure I can mention

•19th most watched erlang repo on
github, almost 2 years old

Monday, 8 April 2013

error_logger at AdGear

op
s/
se
c

Monday, 8 April 2013

lager at AdGear

op
s/
se
c

Monday, 8 April 2013

Special thanks
•Steve Vinoski for a lot of initial

design ideas

•Fred Hebert for sharing his
production experience and ideas

•Everyone at Basho for their ideas
and reviewing my incessant PRs

•All the users and contributors

Monday, 8 April 2013

Questions?

Monday, 8 April 2013

