
Chicago Boss
A web framework built for comfort

(and speed)

Evan Miller

March 22, 2013

Erlang Factory San Francisco

Friday, March 22, 13



Personal History

Friday, March 22, 13



Personal History

• 2006-2007:   Amazon Search Operations 
(Operational Excellence Engineer)

Friday, March 22, 13



Personal History

• 2006-2007:   Amazon Search Operations 
(Operational Excellence Engineer)

• 2007:  Software Engineer @ IMVU

Friday, March 22, 13



Personal History

• 2006-2007:   Amazon Search Operations 
(Operational Excellence Engineer)

• 2007:  Software Engineer @ IMVU

• 2008 - ???:  Grad school
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Why Chicago Boss?

• Goal: Reduce a typical website’s 
operational costs by 90%

• Foster non-profit, low-profit, and marginal 
websites.  Enable more self-hosted stuff.  
Power and independence!

• Enable a new generation of deployable 
open-source applications (blogs, forums, 
mailing lists, knowledge bases, wikis...)
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What is Chicago Boss?

• Chicago Boss : Ruby on Rails :: Nginx :  Apache

• Same overall goals, but:

• Non-blocking network I/O

• No-copy memory architecture

• “Faster, Cheaper, Better”
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Ruby String Erlang I/O List

Append Function String.concat [H|T]
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Template Memory 
Architecture

Ruby String Erlang I/O List

Append Function String.concat [H|T]

Append 
Complexity

O(N) O(1)
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Template Memory 
Architecture

Ruby String Erlang I/O List

Underlying data 
structure

char * char **
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Template Memory 
Architecture

Ruby String Erlang I/O List

Underlying data 
structure

char * char **

OS network
write function

write
(single write)

writev
(scattered write)
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Template Memory 
Architecture

Ruby String Erlang I/O List

Data Mutability Mutable Immutable
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Template Memory 
Architecture

Ruby String Erlang I/O List

Data Mutability Mutable Immutable

Memory footprint O(clients) O(templates)
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Template Memory 
Architecture

In Erlang, shared template snippets 
occupy same hunk of memory 

across multiple requests!
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Template Memory 
Architecture

• Practical Benefits:

• Tests run quickly.  Fast development cycle.

• Drastically cuts hardware requirements 
and operational headaches

• No complex view caching.  Feature set 
isn’t constrained by ability to cache.
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Erlang VM
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100% Non-Blocking I/O

Blocking I/O
(Apache / RoR)

Non-Blocking I/O
(Nginx / Erlang)

# processes many one
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100% Non-Blocking I/O

Blocking I/O
(Apache / RoR)

Non-Blocking I/O
(Nginx / Erlang)

# processes many one

Memory per 
concurrent 

request
MB KB
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100% Non-Blocking I/O

mysql_read(
 function(retval1) {
  mysql_read(
   function(retval2) {
     ...
  });
});

Node.js

Result1 = mysql:read(),
Result2 = mysql:read().

Erlang
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100% Non-Blocking I/O

• Erlang’s callback-free design is pure genius

• Engineering benefits:

• Eliminates context switches

• Lower RAM requirements

• Better CPU cache-hit rate
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100% Non-Blocking I/O

• Practical benefits:

• Makes it hard not to write a high-
performance server

• WebSockets and real-time notifications 
“for free”

• Build lots of services into one server  
(web + email + Jabber + ...)
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Chicago Boss: Features

• High-performance web server

• Django templates (99% compatible)

• Rails-like controller and model API

• WebSockets and long polling

• Built-in email server (send and receive)

• Built-in cluster-wide message queue
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Chicago Boss: Features

• i18n support

• UTF-8 source code

• PO file editor + {% trans %} tag

• Admin interface for editing database

• Rich data modeling (validations + associations)

• Hot code loading and all that
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BossDB
• Only (?) database abstraction layer for Erlang

• Many databases supported, easy to add others

• MySQL

• PostgreSQL

• Mnesia

• Tyrant

• DyanmoDB

• Riak

• MongoDB
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BossDB
• Models are parameterized modules (boo-hoo)

• Accessor functions are automatically generated

• Associations

• Compatible with ErlyDTL

{{ message.author.first_name }}

-belongs_to(author).

Author:first_name().
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BossDB
• Rails conventions

• Plural table names, column named id

• Rich, language-integrated querying

• Built-in caching and connection pooling

boss_db:find(message,
    [contents = “Hello!”])
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BossDB
• Built-in event system (BossNews)

• Events expire out-of-date cache entries

• BossDB is great. More projects should use it.

boss_news:watch(
    “message-42.contents”, 
    CallBack)
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Example Code
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Hello, World

-module(my_test_controller, [Req]).
-compile(export_all).

index(‘GET’, []) ->
    {output, “Hello, world!”}.
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Hello, Template

• index.html:

• Controller code:

index(‘GET’, []) ->
    {ok, [{msg, “Hello, world!”}]}.

A message for you: {{ msg }}
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Hello, Model

• message.erl:

• Controller code:

index(‘GET’, []) ->
    Msg = message:new(id, “Hello!”),
    {ok, [{msg, Msg:contents()}]}.

-module(message, [Id, Contents]).
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Routing

• GET /message/show/message-42

• Controller:   message

• Action:   show

• Token list:  [“message-42”]
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Routing
• Custom routes with regular expressions

{“/show/(message-\d+)”, [
    {controller, “message”},
    {action, “show”},
    {id, ‘$1’}]}.

• Support for named capture groups

{“/show/(?<msg_id>message-\d+)”, [
    {controller, “message”},
    {action, “show”},
    {id, ‘$msg_id’}]}.
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Routing

Parameter names are inferred 
from the parse tree!
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Routing
[
    {controller, “message”},
    {action, “show”},
    {message_id, ‘$1’}
]

show(‘GET’, [MessageId]) ->
    ...

Matches
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Thanks
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Libraries Used
•Aleppo *

• BossDB *
• BSON
•Cowboy
•DDB
• dynamic_compile

• Elixir
• epgsql
• erlmc
• ErlyDTL *
• gen_server2

* Originally developed for Chicago Boss

• gen_smtp

• ibrowse
• Jaderl *
• JSX
• Lager
•medici

•mimetypes
•misultin
•mochicow
•mochiweb
•mongodb

•mysql

• pmod_transform
• poolboy
• proper
• protobuffs
• ranch

• riakc
• SimpleBridge
• TinyPQ *
• TinyMQ *
• uuid
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Find Us

@chicagoboss on Twitter

chicagoboss@googlegroups.com

#chicagoboss on irc.freenode.net

http://www.chicagoboss.org/
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