
Chicago Boss
A web framework built for comfort

(and speed)

Evan Miller

March 22, 2013

Erlang Factory San Francisco

Friday, March 22, 13

Personal History

Friday, March 22, 13

Personal History

• 2006-2007: Amazon Search Operations
(Operational Excellence Engineer)

Friday, March 22, 13

Personal History

• 2006-2007: Amazon Search Operations
(Operational Excellence Engineer)

• 2007: Software Engineer @ IMVU

Friday, March 22, 13

Personal History

• 2006-2007: Amazon Search Operations
(Operational Excellence Engineer)

• 2007: Software Engineer @ IMVU

• 2008 - ???: Grad school

Friday, March 22, 13

Why Chicago Boss?

Friday, March 22, 13

Why Chicago Boss?

Friday, March 22, 13

Why Chicago Boss?

Friday, March 22, 13

Why Chicago Boss?

Friday, March 22, 13

Why Chicago Boss?

Friday, March 22, 13

Why Chicago Boss?

• Goal: Reduce a typical website’s
operational costs by 90%

Friday, March 22, 13

Why Chicago Boss?

• Goal: Reduce a typical website’s
operational costs by 90%

• Foster non-profit, low-profit, and marginal
websites. Enable more self-hosted stuff.
Power and independence!

Friday, March 22, 13

Why Chicago Boss?

• Goal: Reduce a typical website’s
operational costs by 90%

• Foster non-profit, low-profit, and marginal
websites. Enable more self-hosted stuff.
Power and independence!

• Enable a new generation of deployable
open-source applications (blogs, forums,
mailing lists, knowledge bases, wikis...)

Friday, March 22, 13

What is Chicago Boss?

Friday, March 22, 13

What is Chicago Boss?

• Chicago Boss : Ruby on Rails :: Nginx : Apache

Friday, March 22, 13

What is Chicago Boss?

• Chicago Boss : Ruby on Rails :: Nginx : Apache

• Same overall goals, but:

• Non-blocking network I/O

• No-copy memory architecture

Friday, March 22, 13

What is Chicago Boss?

• Chicago Boss : Ruby on Rails :: Nginx : Apache

• Same overall goals, but:

• Non-blocking network I/O

• No-copy memory architecture

• “Faster, Cheaper, Better”

Friday, March 22, 13

ErlyDTL

Friday, March 22, 13

Template Memory
Architecture

Friday, March 22, 13

Template Memory
Architecture

Ruby String Erlang I/O List

Friday, March 22, 13

Template Memory
Architecture

Ruby String Erlang I/O List

Append Function String.concat [H|T]

Friday, March 22, 13

Template Memory
Architecture

Ruby String Erlang I/O List

Append Function String.concat [H|T]

Append
Complexity

O(N) O(1)

Friday, March 22, 13

Template Memory
Architecture

Ruby String Erlang I/O List

Underlying data
structure

char * char **

Friday, March 22, 13

Template Memory
Architecture

Ruby String Erlang I/O List

Underlying data
structure

char * char **

OS network
write function

write
(single write)

writev
(scattered write)

Friday, March 22, 13

Template Memory
Architecture

Ruby String Erlang I/O List

Data Mutability Mutable Immutable

Friday, March 22, 13

Template Memory
Architecture

Ruby String Erlang I/O List

Data Mutability Mutable Immutable

Memory footprint O(clients) O(templates)

Friday, March 22, 13

Template Memory
Architecture

In Erlang, shared template snippets
occupy same hunk of memory

across multiple requests!

Friday, March 22, 13

Template Memory
Architecture

• Practical Benefits:

• Tests run quickly. Fast development cycle.

• Drastically cuts hardware requirements
and operational headaches

• No complex view caching. Feature set
isn’t constrained by ability to cache.

Friday, March 22, 13

Erlang VM

Friday, March 22, 13

100% Non-Blocking I/O

Friday, March 22, 13

100% Non-Blocking I/O

Blocking I/O
(Apache / RoR)

Non-Blocking I/O
(Nginx / Erlang)

processes many one

Friday, March 22, 13

100% Non-Blocking I/O

Blocking I/O
(Apache / RoR)

Non-Blocking I/O
(Nginx / Erlang)

processes many one

Memory per
concurrent

request
MB KB

Friday, March 22, 13

100% Non-Blocking I/O

mysql_read(
 function(retval1) {
 mysql_read(
 function(retval2) {
 ...
 });
});

Node.js

Result1 = mysql:read(),
Result2 = mysql:read().

Erlang

Friday, March 22, 13

100% Non-Blocking I/O

• Erlang’s callback-free design is pure genius

• Engineering benefits:

• Eliminates context switches

• Lower RAM requirements

• Better CPU cache-hit rate

Friday, March 22, 13

100% Non-Blocking I/O

• Practical benefits:

• Makes it hard not to write a high-
performance server

• WebSockets and real-time notifications
“for free”

• Build lots of services into one server
(web + email + Jabber + ...)

Friday, March 22, 13

Chicago Boss:
Features

Friday, March 22, 13

Chicago Boss: Features

• High-performance web server

• Django templates (99% compatible)

• Rails-like controller and model API

• WebSockets and long polling

• Built-in email server (send and receive)

• Built-in cluster-wide message queue

Friday, March 22, 13

Chicago Boss: Features

• i18n support

• UTF-8 source code

• PO file editor + {% trans %} tag

• Admin interface for editing database

• Rich data modeling (validations + associations)

• Hot code loading and all that

Friday, March 22, 13

BossDB

Friday, March 22, 13

BossDB
• Only (?) database abstraction layer for Erlang

• Many databases supported, easy to add others

• MySQL

• PostgreSQL

• Mnesia

• Tyrant

• DyanmoDB

• Riak

• MongoDB

Friday, March 22, 13

BossDB
• Models are parameterized modules (boo-hoo)

• Accessor functions are automatically generated

• Associations

• Compatible with ErlyDTL

{{ message.author.first_name }}

-belongs_to(author).

Author:first_name().

Friday, March 22, 13

BossDB
• Rails conventions

• Plural table names, column named id

• Rich, language-integrated querying

• Built-in caching and connection pooling

boss_db:find(message,
 [contents = “Hello!”])

Friday, March 22, 13

BossDB
• Built-in event system (BossNews)

• Events expire out-of-date cache entries

• BossDB is great. More projects should use it.

boss_news:watch(
 “message-42.contents”,
 CallBack)

Friday, March 22, 13

Example Code

Friday, March 22, 13

Hello, World

-module(my_test_controller, [Req]).
-compile(export_all).

index(‘GET’, []) ->
 {output, “Hello, world!”}.

Friday, March 22, 13

Hello, Template

• index.html:

• Controller code:

index(‘GET’, []) ->
 {ok, [{msg, “Hello, world!”}]}.

A message for you: {{ msg }}

Friday, March 22, 13

Hello, Model

• message.erl:

• Controller code:

index(‘GET’, []) ->
 Msg = message:new(id, “Hello!”),
 {ok, [{msg, Msg:contents()}]}.

-module(message, [Id, Contents]).

Friday, March 22, 13

Routing

Friday, March 22, 13

Routing

• GET /message/show/message-42

• Controller: message

• Action: show

• Token list: [“message-42”]

Friday, March 22, 13

Routing
• Custom routes with regular expressions

{“/show/(message-\d+)”, [
 {controller, “message”},
 {action, “show”},
 {id, ‘$1’}]}.

• Support for named capture groups

{“/show/(?<msg_id>message-\d+)”, [
 {controller, “message”},
 {action, “show”},
 {id, ‘$msg_id’}]}.

Friday, March 22, 13

Routing

Parameter names are inferred
from the parse tree!

Friday, March 22, 13

Routing
[
 {controller, “message”},
 {action, “show”},
 {message_id, ‘$1’}
]

show(‘GET’, [MessageId]) ->
 ...

Matches

Friday, March 22, 13

Thanks

Friday, March 22, 13

Libraries Used
•Aleppo *

• BossDB *
• BSON
•Cowboy
•DDB
• dynamic_compile

• Elixir
• epgsql
• erlmc
• ErlyDTL *
• gen_server2

* Originally developed for Chicago Boss

• gen_smtp

• ibrowse
• Jaderl *
• JSX
• Lager
•medici

•mimetypes
•misultin
•mochicow
•mochiweb
•mongodb

•mysql

• pmod_transform
• poolboy
• proper
• protobuffs
• ranch

• riakc
• SimpleBridge
• TinyPQ *
• TinyMQ *
• uuid

Friday, March 22, 13

Find Us

@chicagoboss on Twitter

chicagoboss@googlegroups.com

#chicagoboss on irc.freenode.net

http://www.chicagoboss.org/

Friday, March 22, 13

mailto:chicagoboss@googlegroups.com
mailto:chicagoboss@googlegroups.com
http://www.chicagoboss.org
http://www.chicagoboss.org

