tail-f

Tailflow
An OpenFlow Controller Framework

Torbjorn Térnkvist
22 March 2013

Tail-f Systems

. Founded 2005
o HQ in Stockholm Sweden, with US sales

o Software Products:
o ConfD - On-device Management Agent
o NCS - Network Control System

o Customers, + 75 world-wide including:

artfoar)e
CisCO BROCADEB ForcelO FUTI)TSU
Alcatel-Lucent @ ERICSSON £ 'I.-"telld)s@

©2013 TAIL-F all rights reserved

Deutsche

_—"

verizon

What the talk will cover

. Part 1: SDN - what is it?

« ...and where does Openflow fit in?

. Part 2: Tailflow

« An Openflow controller (and architecture)

©2013 TAIL-F all rights reserved

N etwo rk m a n a g e m e n t (according to Wikipedia)

Refers to the: that pertain to the:
e activities e Operation

« Mmethods o administration
e procedures e Maintenance

o tools e provisioning

of networked systems.

A network management system (NMS) is used to
monitor and administer a computer network or
networks.

« Common access methods include:

o SNMP
o Command-Line Interface (CLISs)
o NETCONF

©2013 TAIL-F all rights reserved

Netw
ork management .
rding to Wikipedia)

that perta'\n to the:
operat'\on
adm'\n'\strat'\on
ma'\ntenance
prov'\s'\on'\ng
otworked systems.

. Kk management syst is UV
rer-networ r EW

A networ
monitor and adm'\n'\ster a

networks.
methods include:

refers to the:
act'\v'\t'\es

, SNMP
ne Interface (CLls)

©201
3 TAIL-F all rights reserved

Netw
ork management .
rding to Wikipedia)

refers to the: that pertain to the:
activitie o operat'\on
—ainistration

. method] ® :
. pmg?. : léOtS of tedious manual
. tod! rror prone work

Y

., Anet

monit
netw e Very costly!

., Ccom

o) S N T
o Command—L‘me Tnterrace v
NETCONF

(©)

©201
3 TAIL-F all rights reserved

Software Defined Networking (SDN)

An approach to building computer networks that separates
and abstracts elements of these systems.

« This makes it possible to apply modern software
engineering techniques and practices.

\

« Reduces time to deployment

Reduces costs!

©2013 TAIL-F all rights reserved

Tail-f products:

NCS can control and configure
a heterogenus set of network
elements.

« Models

« Datastructures

« Mapping logic

« Auto rendered
interfaces

« Transactions

ConfD may run on the
managed devices to provide
CLI, NETCONF, SNMP... access.

©2013 TAIL-F all rights reserved

NCS and ConfD

SDN
Management Network /
Applications Engineer
. . °
= YANG L $ o
\ Tl
NETCONF, REST, Mapping logic

CLI, WebUI

Java, WS, Scripts

Service
Models | Service activation
and deactivation
End-to-pnd Fine-grained
Transagtional Reconciliation
Integri Dependencies

Real-time
Fine-grained
Read-Write
Synchronization
Reconciliation

Device
Models R "
Juniper, Cisco, F5, A10, ...

Network Simulator -

May run ConfD /

Le

<

Cmd sequences

Software Defined Networking (SDN)

« It's not really about programming the network.

. It's about programming network services!

©2013 TAIL-F all rights reserved

Openflow - what it is.

Traditional network element (according to my imagination)
(e.g a switch/router/firewall)

Openflow Controller

sw &
y sw
HW ‘/\\
HW

The Openflow protocol

Openflow capable switch

©2013 TAIL-F all rights reserved

Openflow - the essence of it

« When a packet enters the

HW, it looks into its flow Openflow capable switch
table, to see what to do Controller
with it.
SW
« Packet header values are —

matched against the flow / T
table entries. o HW

penflow protocol

« A matching entry renders

: . I
corresponding actions to Ethernet packets / \
be applied to the packet.

Computers

©2013 TAIL-F all rights reserved

Openflow - matching

« If no matching entry is found in the flow table, then send
the packet to the controller (SW) for some decision
making.

TCP/
UDP
port

Ingress | Ether Ether P P
port source |dest. | Tttt source dest. | vttt

flow table entry

e The SW tells the HW what to do now (and in the future by
inserting a flow entry into the flow table of the HW).
« Coupled to a flow entry is a set of actions.
« Example of some actions:
. Send out packet on <port>
. Rewrite the <ether source> to some other address
. Drop the packet (i.e no actions)

©2013 TAIL-F all rights reserved

Openflow device management

All kind of devices need to be managed

Management interface here...or here?

—————————————

, |
i | | g
: s : : \ ol
/
| " | W 4
| I : r/
I I %
1 /
| HW | | ! HW
: ! The Openflow protocol
/
! I
\

—————————————

o e — m m m m m m m m m m Em Em m mm Em m—

Traditional network element Openflow capable switch

©2013 TAIL-F all rights reserved

~

N
/

4

~
A

\
\
|
I
1
1
I
1
1
I
I
1
1
I
N I
N\ 1
A 1

N
g\
I
1
1
1
1
/

/

-,

N e e e o e mm o e o o = =

SDN vs Openflow

Openflow is a component of SDN

©2013 TAIL-F all rights reserved

Part2: How to write an OF application?

How can/should the SW be structured?

What about management?

©2013 TAIL-F all rights reserved

The role of the controller

« From the Openflow controller point of view; an Openflow
switch generates a number of events, for example:

« datapath-join - when a switch connect to the controller
« packet-in - when a packet is delivered from a switch

. flow-removed - a flow (rule) was removed
(e.g because of an expired timeout)

For each event we want to apply some logic!

©2013 TAIL-F all rights reserved

Sources of inspiration

. Functional programming (of course...)

« The micro-protocol idea (what?)

By partition complex protocols into simple micro
protocols, each of which is implemented by a protocol
layer. Protocol layers can be stacked on top of each
other in a variety of ways.

TCP

ETH

©2013 TAIL-F all rights reserved

Not
Very
Micro...

Each layer encapsulates some
minimal amount of logic in order
to make it composable and
easy to understand.

Somewhat more micro...

A stack of flowlets, forming a virtual-L2-networks application.

The MAC-learner snoop the incoming packets and

MAC-Learner store any new Mac+Port info in a DB

The ARP-replier can act as an ARP-proxy for a set of

ARP-Replier IP addresses.

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I

I : The L2-filter will filter out which of the incoming
[L2-Filter I packets that should be allowed further treatment of
: : succeeding flowlets.
I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

The ARP-flooder make sure that any incoming ARP

ARP-Flooder request is flooded on all the switch ports.

The L2-flow-maker creates an L2 flow for any incoming

L2-FlowMaker packet it sees.

©2013 TAIL-F all rights reserved

Tailflow key components

. Flowlet ::= Erlang module + Yang module
« The configuration is described by Yang
« Erlang modules are ordered in execution stacks
« An Erlang module can return either of:
o {break, LocalState}
o {continue, LocalState, EventState}
« {jump, LocalState, EventState, NewStack}

. Switch-logic ::= Flowlet configs + Flowlet stacks
« Can be applied to a particular switch (datapath_id)
« Or to any switch

©2013 TAIL-F all rights reserved

, ,oTTETEETEEEEETEEEEEES ~ N .
YANG models: J \
openflow.yang, - ConfD \I
switch-logic.yang, : |
mac-learner.yang, I I
....etc... I I I A1
| |
| |
| |
| |
! Events ! B1
I Tailflow TCPISSL !
User : controller I
Written : : A2
| |
| |
| |
| |
1 I
. . 1
Switch logic ' | A | | feeeeeeee ,
S] _ P 7
Openflow
switches

<flowlet>.erl

©2013 TAIL-F all rights reserved

Yang model of the controller (simplified!)

container controller {
leaf listen-port {type uint16;}
list switch-logic {

leaf name {type string;}
leaf datapath-id {type datapath-id_t; description "Datapath identifier or Any";}

container flowlets {description "Augmentation point for flowlets.";}
list flowlet-execution-stack {

leaf name {type string;}

list flowlet {
leaf id {type identityref {base "of:flowlet-type";} description "Flowlet identifier";}
leaf erlang-module {type string; description "Erlang module implementing the flowlet";}

b

b
ks
b

©2013 TAIL-F all rights reserved

Example config: 12-filter-flowlet

switch-logic switch {
datapath-id Any;

flowlets {

12-filter {
...see other slide...

¥
by

flowlet-execution-stack switch-stack {
flowlet mac-learner {erlang-module tailflowlet_mac_learner;}
flowlet arp-replier {erlang-module tailflowlet_arp_replier;}
flowlet 12-filter {erlang-module tailflowlet_I2_filter;}
flowlet arp-flooder {erlang-module tailflowlet_arp_flooder;}
flowlet /12-flow-maker {erlang-module tailflowlet_I2_flow_maker;}

by

start-flowlet-stack switch-stack;

©2013 TAIL-F all rights reserved

Yang model of: I12-filter flowlet

identity |2-filter {base of:flowlet-type;}
augment "/of:openflow/ofc:controller/ofc:switch-logic/ofc:flowlets" {
container 12-filter {

list rule {ordered-by user; description "Define filter rules to be applied.";
leaf name {type string; description "Name of filter rule.";}

container condition {
leaf is-arp-request {type boolean; description "Check if incoming packet is an ARP request.";}
leaf is-on-the-same-I2-network {type boolean;
description "Check that the L2 src and dest. are on the same virtual L2 network"; }
...more conditions here...

container action {description "Specify what should be done..."}
choice action_type {

case pass {leaf pass { type empty; description "Continue with the next flowlet";}}
case drop {leaf drop { type empty; description "Stop any further flowlet execution";}}
case goto {

leaf goto {

type leafref {
path "/of:openflow/ofc:controller/ofc:switch-logic/ofc:flowlet-execution-stack/ofc:name";

by

©2013 TAIL-F all ri}hts reserved

Example config: 12-filter-flowlet

[2-filter {

rule allow-arp-request {
condition { is-arp-request true;}
action { goto arp-stack;}

b

rule allow-same-I2-network {
condition { is-on-the-same-I2-network true;}
action { pass;}

¥

rule deny-all {
action { drop; }
¥

©2013 TAIL-F all rights reserved

Example: tailflowlet_I2_filter.erl

-behaviour(tailflowlet).
init(#flowlet_init{ip=Ip, port=Port} = X) ->

{ok, CDB} = tailflow_cdb:connect(Ip, Port),
Rules = get_the_rules(X, CDB),
#s{rules = Rules}.

packet_in(#s{rules=Rules} = State,
#event_data{msg = Msg}) ->

Flow = flower flow:flow_extract(0, Msg#ofp_packet_in.in_port,
Msg#ofp_packet_in.data),

Result = exec_rules(Rules, State, Msg, Flow),
...etc...

©2013 TAIL-F all rights reserved

Proof of concept demo:

Using Tailflow and OpenVswitch
we implemented a control
application for a simulated Data
Center with virtual L2 networks.

2013 TAIL-F all rights reserved

OpenVswitch primer

« A virtual switch that supports OpenFlow.
« Create bridges (switches), connect VM's.

. Create virtual networks.

ovs-vsctl add-br my-gw
ovs-vsctl add-port my-gw ethO

ovs-vsctl add-br my-sw
...start VM, connected to my-sw...

ip link add name a-side type veth peer name b-side

ovs-vsctl add-port my-gw a-side
ovs-vsctl add-port my-sw b-side

Physical host

e

©2013 TAIL-F all rights reserved

o e o o e e e e —

—— o o e e e o o e e e o

Controlling a simulated Data Center

Demo: Simulated Data Center

rigel (physical machine) 1

NCS [_ew |

T]

\\ Aggr-SW

Rack-1 /=
f-'f |
[Machine-1] |
Machine2] |
I
I
|

y— |
I Machine4]
-F-I—————'-——I

o —

©2013 TAIL-F all rights reserved

Realistic scenario?

The previous example, implementing
a NAT/FW is not very realistic
perhaps...

So let's finish with a more realistic
use case scenario for Openflow:
Service Chaining

©2013 TAIL-F all rights reserved

SDN Use Case: Service Chaining

NCS

(
Service
Models
7
Device / Flowlet
Models
V7
_

Service :
Chaining Tailflow
Flowlet Controller

|rewaII

nternet) A1 ¢ % / _A

Thank you for listening!

Questions?

©2013 TAIL-F all rights reserved

