COMARCH

Erlang in the battlefield

tukasz Kubica
Telco BSS R&D Department
Cracow Erlang Factory Lite, 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

Agenda

Introduction to the SCM
Erlang vm and upgrades
Tracing

Mnesia

Final thoughts
Questions

COMARCH

2 Copyright Comarc h 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

The Session Control Module

A part of the Comarch Billing System

Does AAA for SIM cards

Enforces limits (e.g. max data volume per month)

Can do fraud detection (e.g. IMEI binding for M2M SIMs)
Performs on-line charging (using a C node)

Evolved from a real-time Data Processing Server (rtDPS)
developed in C/C++

On production for a long time - still no downtime

COMARCH

3 Copyright Comarc h 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

Agenda

Introduction to the SCM
Erlang vm and upgrades
Tracing

Mnesia

Final thoughts

Questions

COMARCH

4 Copyright Comarc h 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

Always build on a rock

Customer does not care about technology, when a 3rd party component
fails, whole system fails

A language used for development is less important than a platform (vm,
libraries)
Ever traced a memory corruption or a leak on a live system?
Or maybe tried to tune java GC times?
Not enough or too much logs?
Your allocator’s heap got fragmented?
Our experience with Erlang
The vm is compact and written in plain C
Great memory stability - no heap fragmentation.
Traceability
Good performance (for a vm)
Simple yet powerful language
But nothing is perfect ...

COMARCH

5 Copyright Comarch 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

Just give me a little tuning

Bind your schedulers

Scheduler context switching is a problem

Binding schedulers give a big performance boost

Remember to leave some room for other processes!

The biggest problem: sched setaffinity simply does not work on

some virtual configurations, so the binding itself does not work too
Turn off the load compacting (+scl)

All your cores are belong to us - so don't let them sleep

We (and apparently Basho) have experienced severe and occasional
performance drop which seems to be connected with load compacting

Processes simply are not homogeneous - think many workers using
one gen server
The biggest VM problem - scheduler tuning is hard, and it has
changed in R16.

COMARCH

6 Copyright Comarc h 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

Releases and upgrades - the Good

Hot code loading is great, you can hotfix easily

Release system is done right - you can prepare upgrade that
will determine what to do when installed. This is a real benefit

You must be prepared for node restarts in more complex cases.
In HA system you have spare nodes, but during upgrade your
system is not so HA

In fact upgrades are the most risky thing you can do on a live
HA system

COMARCH

7 Copyright Comarc h 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

Releases and upgrades - the Ugly

Records are NOT done right in erlang
Say we have myfun (#record{field=X})
Now let's add a new field to the record
And imagine you have N modules with such matchspeces

And try to run an upgrade ...

You can tell one version from another, but you code will become a
total mess

Records versioning should be supported out of the box

It may seem that atomic loading of multiple modules might do,
but things are more complex

COMARCH

8 Copyright Comarc h 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

Releases and upgrades - the Bad

A real fun begins when you have records and mnesia

Solution that typically works:
Upgrade binaries on all nodes

Make all modules support old and new version and use old by
default

Switch a param and make all you modules write a new version
and convert from old on read

The problem is that you will not notice if you binaries support
the new version in a wrong way - until it's too late

COMARCH

9 Copyright Comarc h 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

Agenda

Introduction to the SCM
Erlang vm and upgrades
Tracing

Mnesia

Final thoughts
Questions

COMARCH

1 O Copyright Comarc h 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

A quick look at erlang tracing

11

One of the biggest and most important erlang features — you simply
have to know it

You can trace both system events (like GC, process scheduling) and
calls

It is so good that we do not use any debug logs anymore
Just remember one thing - when you trace calls, trace flags are
bound to module instances

Beware on-demand code loading, only modules loaded before tracer
setup will be traced

When you reload a module, you should setup tracing again
Tracing is useful in two ways
Obviously, it allows to check what is going wrong

But it can also be used for system profiling and even monitoring (thanks
to low performance penalty)

COMARCH

Copyright Comarc h 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

Sequential tracing - a godsend

Imagine a system which spawns a process per request (not hard, isn't it
?) with 1500 reqg/sec

Once a few minutes you get a request for a certain SIM which

mysteriously fail. You have a callstack in your logs, but it does not help
much

You can either release new binaries or simply learn sequential tracing

Find a function with argument allowing you to identify the subject (e.g. IMSI
number)

Launch dbg or ttb with this function adding a matchspec for your entry
point which activated sequential trace

For every other function add matchspec which matches only when process
is infected
We did a simple tool with predefined set of modules/functions. Uses the
ttb module.

COMARCH

1 2 Copyright Comarch 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

Sequential tracing cont.

13

Entry point matchspec

dbg:funZms (fun (Args) when hd(Args) == Trace
set seq token(send ,true),

set seqg token(’'receive’,true),
set seqg token(timestamp, true),

exception trace ()

end)
Standard matchspec
dbg:funZms (fun () when 1s seq trace() ->
exception trace ()
end)

COMARCH

Copyright Comarch 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

Performance monitoring

etop is nice, but is process oriented. When you have 1500
processes/sec it is rather hard to use it

fprof is an offline tool - traces all and have huge performance
penalty

eprof let's you profile a live system, but the API takes ONE single
MFA at a time :-(

However, it's easy to create your own tool:

Use call tracing with timestamp and exception trace -you can
measure time between call and return/exit

You can enable some GC tracing for even more info

Then simply aggregate your data (you will have to record some data
per process)

Add some info from sockets, system, process info (see etop code
for some undocumented API’s)

COMARCH

1 4 Copyright Comarc h 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

Agenda

Introduction to the SCM
Erlang vm and upgrades
Tracing

Mnesia

Final thoughts
Questions

COMARCH

1 5 Copyright Comarc h 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

Mnesia is cool

Great functionality out-of-the-box, for free
The idea is quite simple, and simplicity is good
Very elegant programming model (funs as activities)

COMARCH

1 6 Copyright Comarc h 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

Mnesia - transactions and efficiency

Transactions are generally on the slow side (compared to ETS)

The locking model avoids deadlocks, but if transaction lasts too long, the
sleep strategy takes the toll

Sometimes, if only one node modifies data, it is better to make a
gen server plus dirty for shared resources - but you loose rollback
The dist auto connect ftrap
Experiment — physically disconnect a replica node during high load
Watch your system die ...

Why ? To resolve each transaction your system needs a net setuptime
seconds

We got rid of transactions almost completely (when you have some
shared resources, you should do everything to have them modified only
locally)

COMARCH

1 7 Copyright Comarch 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

Mnesia - memory tables

Performance of memory tables is great, much better then disc
tables

But you have to be very careful

You can easily persist table using dump tables, butit locks table
for read, so it was no-go for us ...

You can use backup module, which uses snapshot strategy, but
then you have a startup problem if all nodes go down

For disc tables, mnesia keeps track of longer running node, and
wait for tables will timeout if nodes are started out of
sequence

But not for memory tables, they are simply loaded empty (if there
happens that no other node is present during startup)

So depending on your strategy, you can either load old state, new
state or stay with empty tables

COMARCH

1 8 Copyright Comarc h 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

Mnesia - indexes and table loading

Indexes are unusable if you have many records per key
Index simply holds a list of keys. Every operation on it is a list operation

When you start a node, index is build up from the ground, so there is lots of
operations on long lists

Suppose we have 1 million records, which are logically grouped into 100 groups
and you have an index on group_1id field

Such a table will load for ages, much longer then it is safe for a HA system

Table replication holds a read lock too, so when you start a new node,
performance will suffer

Partial solution - use frags, but in our case this did not solve our grouping
problem

So, we did a mnesia customization and we use ETS for index instead of a
list (so basically, ETS index holds an ETS table id instead of a simple list)

19 COMARCH

Copyright Comarch 2013

Erlang Factory Lite 2013 — Erlang in the battlefield

Final thoughts

Erlang is a solid platform to build HA applications on. There are
some gotchas, but nothing can simply be perfect. Considering
the SCM, erlang seems to be a sweet spot - development is
robust, library ecosystem is large and high quality, the VM is
very stable.

You simply feel that it has been done by professionals for
professionals and that's a lot.

COMARCH

20 Copyright Comarc h 2013

COMARCH

Thank you

Lukasz.Kubica@comarch.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

